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1 Introduction

The linear properties of the transverse phase space are described by the normal
mode Twiss parameters �i and �i, the betatron phase �i, and the 2 � 2 coupling
matrix C. An e�cient method for computing these parameters is presented along
with prescriptions for determining derivatives with respect to quadrupole rotations
and quadrupole strength changes.

2 Propagation of Twiss and Coupling Parameters

the normal mode Twiss parameters are obtained from the one-turn matrix T by
writing T in the form[1]

T = VUV�1 : (1)

The normal mode matrix U is block diagonal

U =
�
A 0
0 B

�
; (2)

and the coupling matrix V is of the form

V =
�


I C

�C+ 
I

�
; (3)

where

2 = 1� kCk : (4)

The normal mode twiss parameters are obtained fromU using the standard equations
(cf. Bovet et al.[2] pg. 16). Given that the normal mode analysis has been done at
point 1, and given the transfer matrix T12 between points 1 and 2, how can the
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normal mode analysis be propagated from 1 to 2? One straightforward way is simply
to form the one{turn matrix at point 2:

T2 = T12T1T
�1
12 ; (5)

and the Twiss and coupling analysis can be computed as indicated above. The prob-
lem here is that when a design/analysis program does an optimization it can easily
have to reevaluate the entire lattice 103 times or so. Since there are of order 103

elements in the CESR lattice that means that there are of order 106 propagations. It
is thus worthwhile to �nd a more e�cient way to propagate the normal modes and
this can be achieved by working directly with the 2�2 submatrices.

Using Eqs. (1) and (5) the propagation of the normal mode matrix U is given by

U2 = V�1
2 T2V2

= (V�1
2 T12V1)U1 (V

�1
1 T�1

12 V2) (6)

�W12U1W
�1
12

where
W12 � V�1

2 T12V1 : (7)

W12 is the similarity transformation connecting the eigenmode matrices U1 and U2.
Since the eigenmodes are independent there cannot be any terms inW12 that connect
the two modes. Since the Ui are block diagonal this means that W12 is either block
diagonal or is \o�{block diagonal" (has zeros on the 2�2 block diagonals). A formal
proof of this is given in Appendix A. The exceptions to the above statement come
when the modes can \mix" at the coupling resonance or at the stop{band resonance.
We will not consider these exceptional cases further. W12 will be o�{block diagonal
when the mode associated with the upper-left hand block in U1 moves to the lower-
right hand block in U2 and vice versa for the other mode. This case can occur, for
example, in a Mobius lattice but for ordinary CESR lattices this is not the case. Thus
we consider �rst the case where W12 is block diagonal:

W12 =
�
E12 0
0 F12

�
: (8)

Write

T12 =
�
M12 m12

n12 N12

�
: (9)

From Eq. (7) we have V2W12 = T12V1 which gives with Eqs. (8) and (9)�

2E12 C2F12

�C+
2 E12 
2F12

�
=
�

1M12 �m12C

+
1 M12C1 + 
1m12


1n12 �N12C
+
1 n12C1 + 
1N12

�
: (10)

Consider �rst the (2,2) component in Eq. (10). Since W12 is made up of symplectic
matrices W12 is symplectic and thus kF12k = 1. Thus


22 = kn12C1 + 
1N12k : (11)
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Equating the rest of the terms in Eq. (10) gives

E12 = (
1M12 �m12C
+
1 )=
2 ;

F12 = (n12C1 + 
1N12)=
2 ; (12)

C2 = (M12C1 + 
1m12)F
�1
12 :

From Eq. (8) the normal mode vectors propagate as

a2 = E12 a1 ;

b2 = F12 b1 : (13)

If W12 is o�{block diagonal so that

W12 =
�

0 F12

E12 0

�
; (14)

The appropriate equation for 
2 is now


22 = kM12C1 + 
1m12k ; (15)

and the formulas for E12, F12, and C2 are

E12 = (
1n12 �N12C
+
1 )=
2 ;

F12 = (M12C1 + 
1m12)=
2 ; (16)

C2 = (
1M12 �m12C
+
1 )E

�1
12

and the normal mode vectors propagate as

b2 = E12 a1 ;

a2 = F12 b1 : (17)

Faced with Eqs. (11) and (12) on the one hand and Eqs. (15) and (16) on the
other, which set of equation should be used? The problem here is that, in general,
both solutions are possible. Faced with two possibilities one possible answer is to
choose the solution with the largest 
2 thus minimizing the coupling matrix C2. This
prescription is equivalent to Billing's[1] choice of signs for 
 in his Eq. (14). That is,
with this choice one gets the same answer as would have been obtained by forming
T2 from Eq. (5) and then using the recipe given in [1]. It should be noted that if the
RHS of Eq. (11) or Eq. (15) is zero or negative then there is only one solution and
the choice is unambiguous.

In the special case where T12 is block diagonal, i.e. n12 = m12 = 0, then W12 is
block diagonal and Eqs. (11) and (12) reduce to


2 = 
1 ;

W12 = T12 ; (18)

C2 =M12C1N
�1
12 :
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3 Propagation of the Dispersion

The dispersion in normal mode coordinates is related to the despersion in x{y
coordinates by e�a =

fV�1 e�x (19)

where the tilde denotes the use of the full 6-dimensional space

e�a = (�a; �
0

a; �b; �
0

b; 0; 1)
t ;

fV =

0BBBBBBBBBBB@

V

........
0

� � � � � � � � � � � � � � � � � � � � �

0

........

1
1

1CCCCCCCCCCCA
: (20)

The propagation for e�a is then

e�a2 =
fW12

e�a1 (21)

where fW12 is obtained from the appropriate analog of Eq. (7)

4



4 Real Space Motion With Coupling

At a speci�c point in the ring how does the position of the beam change in the
x{y plane on a turn-by-turn basis? This question has been analyzed by Bagley and
Rubin[3]. The intention here is to clarify the sign of the motions.

For a mode shaking the x{y position on the nth turn is given by Bagley and
Rubin[3]:

x = bA
q�a cos �a(n) (22)

y = bA�
�
q
�bC22 cos �a(n)�

q
�bC12 sin �a(n)

�
; (23)

where �a(n) is the total phase advance from turn 0. For C22 > 0 and C12 = 0 the
motion is along a line that is rotated clockwise with respect to the x{axis as shown
in �gure 1a. For C12 > 0 and C22 = 0 the motion is elliptical with the beam rotating
in a clockwise manner as shown in �gure 1b.

xx

y y

 θ 

C22 > 0 C12 > 0 
a) b)

Figure 1: Coupled motion in the x|y plane at one point in the ring. (a) C22 > 0,
C12 = 0. (b) C12 > 0, C22 = 0.
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5 C Propagation Between Couplers

As shown in Appendix A any 2�2 matrix can be decomposed into rotational and
anti-rotational matrices. We can thus write the C matrix at point 1 as

C1 = �1 S(�1) + �1R(�1) (24)

Between couplers, C propagation is derived from Eq. (18):

C2 =M12C1N
�1

12 ; (25)

whereM12 and N12 are rotation matrices with rotations angles �a12 and �b12 respec-
tively. Thus

C2 = �1 S(�1 � �a12 � �b12) + �1R(�1 + �a12 � �b12) : (26)

Thus, from Assertion (1) of Appendix A, C11 + C22 and C12 �C21 propagate as the
di�erence between the normal mode phases and C11 � C22 and C12 + C21 propagate
as the sum of the normal mode phases.

One important point here: The way we have de�ned rotation matrices in Eq. (53)
means that a positive phase advance implies a clockwise rotation. Not a counter{
clockwise one.

6 Perturbation From a Rotated Quadrupole

How does changing the focusing strength or body rotation angle of a rotated
quadrupole a�ect things? For simplicity we will assume the quad has zero length.
For a quad rotated by an angle �q in the x{y plane the transfer matrix Tq through
the quad is obtained from the real space rotation matrix Rs and the kick matrix K
by

Tq = Rs(�q)KR
�1
s (�q)

=

0BBB@
1 0 0 0

�k cos(2�q) 1 �k sin(2�q) 0
0 0 1 0

�k sin(2�q) 0 k cos(2�q) 1

1CCCA ; (27)

where

K =

0BBB@
1 0 0 0
�k 1 0 0
0 0 1 0
0 0 k 1

1CCCA (28)
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and

Rs(�q) =

0BBB@
cos �q 0 � sin �q 0
0 cos �q 0 � sin �q

sin �q 0 cos �q 0
0 sin �q 0 cos �q

1CCCA (29)

[Note that here positive real space rotations are de�ned to be counterclockwise.] We
want to know what happens when k or �q is varied. For k variation Eq. (27) gives

�Tq = �k
�
�qc �qs

�qs qc

�
; (30)

and for �q variation

�Tq = 2 ��q k
�

qs �qc

�qc �qs

�
; (31)

where

qc �
�

0 0
cos(2�q) 0

�

qs �
�

0 0
sin(2�q) 0

�
: (32)

Consider the variation of the one{turn matrix at a point just after the quad. Let
Tarc be the transfer matrix from just after the quad to just before the quad so the
one-turn matrix T1 at a point just after the quad is

T1 = TqTarc (33)

The variation of T1 is

�T1 = �TqTarc

= �TqT
�1
q T1 (34)

For both k and �q variation it is easily shown that

�TqT
�1
q = �Tq (35)

thus
�T1 = �TqT1 (36)

To simplify matters it will be assumed that the coupling is weak and we will only
keep terms up to �rst order in the coupling. Thus, from Eq. (4), to �rst order 
 = 1.
From Eqs. (1), (2), and (3) to �rst order

T1 =
�

A CB�AC
BC+ �C+A B

�
(37)
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Using Eq. (37) with Eq. (36) and either (30) or (31) gives �T1 in terms of �k or ��q.
For k variation this gives�

�A �(CB�AC)
�(BC+ �C+A) �B

�
= (38)

�k
�
�qcA � qs(BC+ �C+A) �qsB� qc(CB �AC)
�qsA+ qc(BC+ �C+A) qcB� qs(CB�AC)

�

Using the (1,1) component of Eq. (38) gives an equation for �A. A can be cast in
the standard form:

A =
�
cos �a + �a sin �a �a sin �a

�
a sin �a cos �a � �a sin �a

�
; (39)

and taking the trace of �A gives the variation of the a eigenmode tune:

��a =
�k

2

"
�a cos(2�q) +

sin(2�q)

sin �a
(B12C11 �B11C12 +A22C12 �A12C22)

#

�
�k

2
�a(e�) : (40)

For the b eigenmode the corresponding equation is

��b =
��k

2

"
�b cos(2�q) +

sin(2�q)

sin �b
(A11C12 +A12C22 �B12C11 �B22C12)

#

�
��k

2
�b(e�) : (41)

For an upright quad with �q = 0 Eqs. (40) and (41) reduce to the standard
uncoupled formulas for the tune shift. As shown in Appendix B, between any two
points the normal mode transfer matrix W12 is, to �rst order, independent of the
coupling. This means that Eq. (40) and (41) can be used to de�ne e�ective betas
which can be used in perturbation formulas that are derived without coupling. For
example, without coupling, for a given mode, the change in phase ��2 at point 2 given
a quadrupole perturbation �k at point 1 is

��2 =
�1 �k

4 sin �

h
sin � � sin(� � 2j�2 � �1j)

i ��1 �2 < �1
1 �2 > �1

; (42)

with � being the tune. With coupling the appropriate formula is obtained by sub-
stituting the e�ective beta as calculated from Eq. (40) or (41) for �1 in Eq. (42). A
similar situation holds for the formula for a beta wave.

For the variation of C the (1,2) component of Eq. (38) is added to the symplectic
complement of the (2,1) component. Using the fact that A + A+ = 2I cos �a after
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some algebra one �nds

�C =
�k

2(cos �a � cos �b)

�
(qsB�A+qs) + (43)

qc(CB�AC) + (CB+ �A+C)qc + cos(2�q) (A12 +B12)C
�

The normalized C is[3]
C = GaCG

�1
b (44)

Using this in Eq. (43) gives

�C =
�k

2(cos �a � cos �b)

�q
�a�b sin(2�q)

�
sin �a 0

cos �b � cos �a sin �b

�
+ (45)

�aqc(CB�AC) + �b (CB
+
�A

+
C)qc + cos(2�q) (A12 +B12)C

�
This is the variation of C just after the quad and this variation can be propagated
by the formulas developed earlier. For the zeroth order contribution to �C (the �rst
term on the RHS of Eq. (45)) the decomposition into rotational and anti{rotational
matrices is:�

sin �a 0
cos �b � cos �a sin �b

�
= sin(�+)

�
cos(��) sin(��)

� sin(��) cos(��)

�
� (46)

sin(��)
�
cos(�+) sin(�+)
sin(�+) � cos(�+)

�
where

�+ =
1

2
(�b + �a)

�� =
1

2
(�b � �a) (47)

The above analysis has been done for k variation. For variation of �a the above
analysis can be used with the substitution:

�k cos(2�q) �! �2 k ��q sin(2�q)

�k sin(2�q) �! 2 k ��q cos(2�q) (48)

Appendix A: Block Diagonal Proof

To show that W12 is block diagonal or o�{block diagonal we normalize U1 and
U2 with the standard similarity transformation (Billing[1] Eq. (3)):

U =GUG�1 ; (49)
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where the G are of the form

G =
�
Ga 0
0 Gb

�
; (50)

and U1 and U2 are of the form

U =
�
R(�a) 0
0 R(�b)

�
; (51)

or are of the form

U =
�
R(�b) 0
0 R(�a)

�
; (52)

where �a and �b are the tunes of the a and b modes respectively, and R is a rotation
matrix

R(�) =
�

cos � sin �
� sin � cos �

�
: (53)

Notice that since the rotation angle of the normal modes is dependent only on the
tune, and not on any particular starting point, U1 and U2 can only be as given by
Eq. (51) or (52). Using Eqs. (6) and (49) we can write

U2 =W12U1W
�1

12 (54)

where
W12 =G

�1
2 W12G1 (55)

Obviously W12 is block diagonal (or o�-block diagonal) if and only if W12 is.

We now assume that the a eigenmode stays in the top-left corner in going from
point 1 to point 2 so that U1 and U2 are of the form Eq. (51):

U1 = U2 = U �
�
R(�a) 0
0 R(�b)

�
(56)

Thus from Eq. (54)

W12 = U W12U
�1

(57)

Writing

W12 =
�
p q

r s

�
(58)

gives for q
q = R(�a)qR

�1(�b) : (59)

We want to show that q = 0. To see this we note the following without proof:
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1) Any 2�2 matrix z can be decomposed into \rotational" and \anti{rotational"
matrices:

z =
�
z11 z12
z21 z22

�
=

1

2

�
z11 � z22 z12 + z21
z12 + z21 �(z11 � z22)

�
+
1

2

�
z11 + z22 z12 � z21

�(z12 � z21) z11 + z22

�
(60)

= �S(�) + �R(�)

where � and � are constants, R is a rotational matrix given by Eq. (53), and

S(�) �
�
cos� sin �
sin � � cos �

�
(61)

The inverse is

z�1 =
1

�2 � �2
[�S(�)� �R(��)] : (62)

2) Given z, the product �S(�) is unique and the product �R(�) is also unique so
that if

z1 = �1 S(�1) + �1R(�1) ;

z2 = �2 S(�2) + �2R(�2) ; (63)

then z1 = z2 if and only if

�1S(�1) = �2S(�2) and

�1R(�1) = �2R(�2) : (64)

3) Rotation matrices and anti{rotation matrices multiply as:

R(�1)R(�2) = R(�1 + �2)

S(�1)R(�2) = S(�1 + �2) (65)

R(�2)S(�1) = S(�1 � �2)

S(�1)S(�2) = R(�2 � �1)

Writing q = �S(�)+�R(�) and using this with Assertions (2) and (3) in Eq. (59)
gives

�S(�) = �S(� � �a � �b) ; (66)

�R(�) = �R(� + �a � �b) ; (67)
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Since we are assuming that we are not at the stop{band resonance where �a+�b = 2�m
for some integer m, Eq. (66) can only be true if � = 0. Additionally, since we are
assuming that we are not at the coupling resonance where �a � �b = 2�n for some
integer n, Eq. (67) can only be true if � = 0. Thus q = 0. Similarly, it can be shown
that r = 0 and thus W12 and W12 are block diagonal. For the case where there is a
switch so that U1 is of the form (51) and U2 is of the form (52) then is can similarly
be shown that p = s = 0 and henceW12 is o�{block diagonal.

Appendix B: Independence of W12

We want to show that W12 between two given points 1 and 2 is, to �rst order,
independent of the coupling. To see this consider �rst the situation where there is only
one thin coupler at point 1. The transfer matrix T12 is then (Cf. Billing[1] Eq. (7))

T12 �
�
M12 m12

n12 N12

�

=
�
M0 0
0 N0

� �
I f

�f+ I

�
(68)

=
�

M0 M0 f

�N0 f
+ N0

�
;

where f determines the strength of the coupler at point 1 and M0 and N0 are the
transfer matrices without any coupling. The diagonal matrices (M12 and N12) of T12

are seen to be independent of the coupling while the o�{diagonal matrices m12 and
n12 are �rst order in the coupling. This can easily be generalized to the case where
there is an arbitrary number of coupling elements at arbitrary positions. Using this
in Eqs. (12) one sees that E12 and F12 are also, to �rst order, independent of the
coupling. QED.
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