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Turning on a `pretzel' , or any closed orbit distortion, can substantially
alter the path of synchrotron radiation (SR), in some instances causing it
to strike components not designed to absorb the radiation. In this paper
I develop equations useful in determining the source position and angle of
dipole SR as a function of the pretzel amplitude and angle. Formula for
linear power deposition and rough estimates of peak temperatures are also
included.

Geometry of Synchrotron Radiation Illumination

Figure 1 shows the design orbit, labeled `ref', going from a dipole where it has
constant bend radius � to a straight section. A pretzeled orbit is also shown
in the bend magnet only. The amplitude and angle of the pretzeled orbit
are measured from the design orbit with positive horizontal values referring
to the ring outward direction. The pretzeled orbit shown has a negative
pretzel amplitude �p but a positive slope p0. The angle � is measured along
the design orbit and is equal to the design orbit path length from the end
of the dipole to the source point, divided by the bend radius. SR is emitted
at angle �+ p0 relative to the straight section axis. At some distance l from
the end of the dipole the emitted radiation reaches a point y away from the
straight section axis where it may be absorbed.

I �rst calculate y in terms of the design orbit angle �. After some ap-
proximation I then invert the expression to �nd the � in terms of y and l.
By inspection of �gure 1:

y = (l + � sin � + p sin �) tan � + p0 � �(1� cos �) + p cos � (1)

Bear in mind that the pretzel shown has a negative amplitude. Equation 1
gives the radial trajectory of the ray emitted from a pretzeled orbit. Usually
we have a known radial location and want to know what the source point is.
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Figure 1: The �gure shows the geometrical realtions between emission and
`absorption' of a ray a synchrotron radiation from a dipole magnet next to
a straight section
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As it stands the equation cannot be inverted (at least by me). 1 However, by
approximating the trigonometric terms it is possible to reduce the expression
to one which is second order in � and can be inverted. Carrying out the
calculation to second order in � is important because terms such as l� are of
the same magnetude as terms such as ��2. The result of this approximation
is

y � l� +
��2

2
+ p+ (l + ��)p0 (2)

As values for � are usually 0.02 radians or less, a second order calculation is
pretty accurate. These geometrical relations have been con�rmed by direct
construction using a CAD layout and in some instance compared with output
from a completely independent program written by Roberto Kersevan at
LNS.

Equation 2 can be inverted easily to yield the useful expression given
below:

� = �(
l

�
+ p0) +

s
(
l

�
+ p0)2 � 2(

p+ lp0 � y

�
) (3)

Note that � is the angle of the point on the design orbit adjacent to the
source point on the pretzeled orbit. The emitted radiation therefore has
angle � + p0 and not just � unless the pretzel happens to be at at the
emission point. With no pretzel the expression reduces to

� =
l

�

 r
1 +

2y�

l2
� 1

!
(4)

The quantity 2y�=l2 is often not as small as you might �rst think, so ex-
panding the square root may not be very accurate.

The maximum pretzel angle is very roughly the maximum pretzel am-
plitude divided by the average horizontal beta function. For CESR this is
around 1 mr. Typical � for CESR are 10 - 20 mr so the direct e�ects of
pretzel angle are usually small. The e�ects of the pretzel amplitude are
not small. In fact a change in the pretzel amplitude has the same e�ect as
changing the radial position of the absorber by the same amount.

1Roberto Kersevan has shown me a derivation of the exact relation for zero pretzel.
His result is:

� = arctan
y + �

l
� arcsin

�p
l2 + (y + �)2

His derivation can probably be extended to include pretzels.
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Power and Temperature Calculations

Normally for storage rings, the SR is absorbed over a stripe with very little
vertical height compared to the width. Consequently the temperature dis-
tribution tends to assume a two dimensional pro�le. The peak temperature
occurs at the vertical center of the stripe. Also typical for storage rings,
is the fact that the vertical height is much smaller than any other physical
size of relevance: distance to cooling channel, thickness of plate, etc. Often
the full width half maximum of the distribution is only tenths of millimeters
compared with millimeters or more to the cooling channels. For this reason
the highest thermal gradients occur very close to the center of the stripe
and the overall temperature rise is only weakly determined by the physical
sizes of the absorbing structure. Under these conditions, to calculate the
approximate peak temperature rise in an absorber of a given material, it is
only necessary to evaluate the linear power density.

Power

The average power radiated by beam of electrons per angle of bend is:

dP

d�
=

88:5E4I

2��
(5)

where E is in GeV, I is the average beam current in mA, and � is the
bend radius in meters, [1]. To get the total SR power absorbed one only
needs the angular range of emitted radiation which reaches the absorber.
The minimum and maxium angles that can strike an absorber are easily
computed by evaluating equation 3 for the maximum and minimum radial
extents of the absorber. Because the power emitted per unit angular bend
is constant, the total power absorbed is simply the angular size multiplied
by dP=d�.

In the case of an absorber whose absorbing surface is perpendicular to
the beamline the linear power density is

dP

dy
=
dP

d�

d�

dy
(6)

From equation 2 we have dy=d� � l + �(� + p0). The linear power density
striking a perpendicular absorber is then:

dP

dy
=

88:5E4I

2��

1

l + �(� + p0)
(7)
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Similarly if the absorber is parallel to the design orbit so that y is con-
stant and l varies, the linear power density can be calculated by evaluating

dP

dl
=
dP

d�

d�

dl
(8)

Equation 3 can be di�erentiated and multiplied by equation 5 to give

dP

dy
=

88:5E4I

2��

(
�1

�
+

2l

�2

�
(
l

�
+ p0)2 � 2(

p+ lp0 � y

�
)

��1=2
)

(9)

Temperature rise

Taking advantage of the relative simplicity of the SR stripe mentioned above,
I make a reasonably accurate approximations which yields a relatively simple
formula for peak temperature rise at the center of the stripe. This calculation
assumes the bulk of the material is cooled by ordinary means and that the
peak temperature results only from the heat ux and thermal conductivity
of the material the SR strikes.

Consveration of energy requires

J = �KrT (10)

where J is the heat ux (energy per unit area per unit time), K is the
thermal conductivity, and T is the temperature. In steady state conditions,

r � J = � (11)

where now � is the heat energy per unit volume, not the bend radius. These
two equations imply

r
2T = �

�

K
(12)

which has the same form as the Poisson equation of electrostatics.
I will choose a particularly simple geometry that might be representative

of the SR absorption problem. Refer to �gure 2. For this geometry the
problem is easy to solve because it is just like a line charge in two dimensions.Z

Jda = P ! P = K�R
dT

dR
�z (13)

where P is the total power striking a length along the beamline �z, R is the
distance to a constant temperature surface (the water cooling for instance),
and w << R is the e�ective width of the source. So we have,

dT

dR
=

(P=�z)

�RK
(14)
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Figure 2: Simpli�ed geometry of heat generated by absorbed SR.

and �nally integrating from R to w,

�T =

�
P

�z

�
1

�K
ln

2R

w
(15)

As an example consider copper with K = 3:4 W=cm�C. The vertical
sigma of the beam stripe is about 0.2 mm so I will take w = 0:04 cm. If the
distance to the cooling source is about 1 cm and the linear power density is
a rather high 1 kW/cm, then

�T = 366 �C

Note that the temperature rise is proportional to the linear power density
but only varies quite slowly with the ratio vertical size to the distance to
the isothermal cooling surface due the the ln term. For example if the beam
size in the example were doubled the calculated temperature rise is 301 �C.
Similarly the distance to the isothermal cooling source can vary a factor of
two with the same small e�ect on the peak temperature rise.
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