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CBN 95-14
Observations on proposed CESR Phase III Interaction Region Quads

G. Dugan

1. Basic requirements

The basic requirements are documented in the RFP1. The most fundamental
requirement is that of the integrated field gradient. This comes, in principle, from the
optical requirements necessary to match the insertion into the CESR lattice, and to
achieve the required β* at the IP (β*v = 7 mm, β*h = 1 m). The requirements are 30 T for
the vertically focusing Q1, 24 T for the horizontally focusing Q2 and 3 T for the skew
quad(SQ). Trims are required also, vertical and horizontal, of strength 0.03 T-m each.
The quads are also to be rotated by 3o, which introduces an additional skew quad field of
1.5 T from Q1 and 1.2 T from Q2.

The available slot length for these devices determines the required gradients.
Assigned slot lengths1 are 0.6 m for Q1 and Q2, 0.15 m for SQ and the trims. Assuming
(optimistically) a magnetic length equal to the slot length, this sets the required field
gradients at 50 T/m for Q1, 40 T/m for Q2, 20 T/m for SQ, and .2 T for the trims. It is
clear that the trims, needing only 2 kG fields, could just as easily be resistive magnets, if
slot length could be found for them outside the cryostat.

The final principal requirement for the quads is their clear aperture. They must
have a warm bore, since beam-related radiation is sufficiently large to require extraction
at room temperature. The minimum inner diameter of the warm bore is set by beam stay-
clear requirements to be 110 mm in Q1 and 160 mm in SQ and Q2.

The inner diameter of the coil is not specified in the RFP. The radial clearance
allowed for the warm bore is a significant design feature, since it drives the coil aperture.
In the CERN LEP quad design2, this radial clearance was 25 mm. They used 45 layers of
aluminized kapton superinsulation, which was apparently sufficient. In the LEP200
design12, the radial clearance was 20 mm. The RFP discusses water cooling of the bore
tube. This may require more radial clearance. However, if we stick with 25 mm, it would
put the inner coil diameter at 160 mm for Q1 and 210 mm for Q2.

Table 1
CESR Interaction Region superconducting magnet parameters

Magnet Multi-
polarity

Integrated
field

Length Gradient
/Field

Bore id Coil id

Q1 Quad 30 T 60 cm 50 T/m 110 mm 160 mm
Q2 Quad 24 T 60 cm 40 T/m 160 mm 210 mm
SQ Skew quad 3 T 15 cm 20 T/m 160 mm 210 mm
H,V Dipole .03 T-m 15 cm .2 T 160 mm 210 mm

Auxiliary requirements and/or operating parameters specified in the RFP include
the following:
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(a). Field quality: the higher multipole fields are required to be <5x10-4 relative to
the quadrupole field at a reference radius of 50 mm. This requirement ensures that the
field errors do not compromise the dynamic aperture of the machine. Persistent current
magnetization should be small (see section 5 below) so its time dependence should not be
an issue.

(b). Alignment requirements: The alignment requirements are specified at 0.2 mm
transverse, 0.5 mm longitudinal, and 0.2 mrad rotational. Presumably, the relative
positioning of Q1, Q2 and SQ within the cryostat will not be adjustable after fabrication.
Thus, in order to satisfy the requirements on the relative  transverse and rotational
alignment, the vendor must assure this sort of accuracy by mechanical design (liable to be
costly), or he must measure the magnetic center and angle of each quad and place them
within the cryostat with this accuracy. In addition, he must establish external fiducials on
the cryostat, with the required precision, which can be used to reference the (cold)
magnetic center and rotation of the assembly during installation.

With regard to the alignment requirements themselves, an error of 0.2 mm in Q1
placement, for example, produces a dipole field integral of about 6x10-3T-m (from Q1).
This is well within the range of the correction dipoles, and so should be OK. However, in
general the ultimate placement error of the quad magnetic center relative to the design
reference orbit involves a contribution not only from the fiducial-field center error, but
also from the error (which comes during installation) between the actual and design
location for the fiducial in the tunnel-survey reference system. It is this total error which
needs to be compared with the correction dipole strength. If the survey error was also 0.2
mm, then the overall error would be more like 0.34 mm, which is, however, still well
within the correction dipole's range.

The longitudinal alignment requirement (0.5 mm) seems unnecessarily restrictive.
Similarly, the stringent rotational alignment requirement appears very tight, in light of the
strong skew quad available for correction.

The interfaces between the magnets and support systems are:

(i) Mechanical: Overall cryostat slot length 185 cm; outer diameter of the cryostat:
40 cm for Q1, 46 cm for SQ and Q2. The inner end of cryostat should be as close as
possible to inner end of Q1. Mechanical interface details of the lead end of the cryostat,
including power leads, cryo lines, instrumentation, etc. to be specified later. The cryostat
itself must be non-magnetic, which rules out the (conventional) use of steel for the
vacuum vessel. Other possibilities include stainless and aluminum. The LEP quads2 used
304L SS for the vacuum vessel, and 304L and 314 L for the bore tubes; this material has
a relative permeability of less than 1.025, which may be adequate.

(ii) Electrical: No requirements are given, since presumably the electrical system
will be designed around the magnets. A preference for low current is suggested in the
RFP. No requirements are set for voltage-to-ground during quench, although a low value
for this quantity reduces insulation demands in the power bus and power supply .

(iii). Cryogenic: LHe at 4.6oK, 1.4 bar available, as well as LN2 at 2 bar. The
refrigerator will presumably be able to satisfy the liquid mass flow and vapor (current
lead) requirements. The expected cryostat heat leak is 20 W. There is no discussion of
transfer line requirements, if any, between cryostat and refrigerator.
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2. Similar magnets which have been built

Table 2 list several similar large-aperture SC quads and their major design
features which have been built over the past 15 years. The examples which are closest in
aperture to the CESR quads are the FNAL quads and the LEP quads. In both cases, the
coils were wound with monolithic wire, rather than cable. The LEP quads used no iron
and had a warm bore, making them the closest analog to the quads needed for CESR.

Table 2
Existing large-aperture superconducting quadrupoles

Descriptor ISR IR
quads

FNAL
beam line

quads

TRISTAN
IR quads

RHIC
IR

quads

LEP IR
quads

LEP 200
IR quads

Reference 9 8 4,5,6 7 2,3 12
Date built 1980 1983 1989 1993 1989 1994

Coil ID (mm) 230 150 140 130 180 160
Super-

conductor
Mono-
lithic

MF wire

Mono-
lithic MF

wire

Cable Cable Mono-
lithic  MF

wire

Mono-
lithic  MF

wire
Bore Warm Cold Warm? Cold Warm Warm

Geometry 2 Blocks 1 block 4 shell 1 shell 2 Blocks 2 Blocks
Iron Yes Yes No Yes No No

Turns/pole 290 275 27 184 200
Length(m) 0.7 2.8 1.45 1.44 2 2
Operating

current (kA)
1.6 0.9 3.4 5 1.6 1.9

Operating
gradient(T/m)

43 50 70 48 36 60

Operating
temp (o K)

4.3 4.5 4.6 4.3 4.3

Operating
margin

12% 22% 21% 57% 50% 23%

Field quality
(typical)

<4x10-3

@65mm
<4x10-3

@50 mm
<5x10-4

@40 mm
<5x10-4

@40 mm
<3x10-3

@50 mm
<2x10-3

@59 mm
Inductance

(H)
1.12 .058 .23 .28

Cryostat OD
(cm)

82 66 40 52 50

Cryostat heat
leak @4K (w)

3-4 11 13 20

Cryostat
quench

pressure (bar)

3.5

Peak temp.
after quench

45oK 200oK 100-
150oK

Quench
voltage

150 v. 200 v.
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The quads made with wire ran at much lower currents than the cable quads. This
is presumably because it was not possible to achieve a large number of turns with the
cable. Lower currents are certainly much preferred from several points of view: for the
magnet, for the cryogenic system, and for the electrical system. This would strongly favor
wire as the conductor.

3. Model designs

It is possible to sketch a crude estimate of a 2-D design for the Q1 and Q2 quads
using analytical formulae for fields in conductor-dominated magnets. The starting point is
the vector potential for an infinitesimal line current dI (of infinite extent in the z-
direction), located at coordinates (a, ′φ ) in the x-y plane:
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For a distribution of line current density in the x-y plane J(a, ′φ ),

dI = J(a, ′φ )adad ′φ ,

so the total vector potential from the current distribution is then
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the vector potential becomes (see Appendix 1):
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in which the quantities
 
Rm (r,a1,a2 )and Φm (φ,φ1)  are given in Appendix 1.
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For r<a1, the quadrupole part of the field (m=1) is

Bφ (r,φ) = −r
2µ0J0

π
ln

a2

a1

Sin2φ1Cos2φ

Br (r,φ) = −r
2µ0J0

π
ln
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a1

Sin2φ1Sin2φ

which corresponds to a constant gradient

g = 2µ0J0

π
ln

a2

a1

Sin2φ1

If NI is the ampere turns/pole in the magnet, then the current density is given by

J0 = 2NI
φ1 a2
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2( )

and the gradient is related to NI by

g = 4µ0NI
πφ1 a2
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2( ) ln
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Sin2φ1

The effect of an iron shell at r=Re, centered at r=0, can be included as described in
appendix 2, for the case of  iron with a homogeneous, isotropic permeability µ.  For r<
Re, the presence of the iron results in an additional contribution to the vector potential,

Az
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2π
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in which Rm
iron (r,a1,a2 ) is defined in Appendix 2.

The total vector potential for points inside the cavity in the iron is then
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The inductance per unit length of the magnet (Ll) can be calculated from these
equations using the expression for the energy stored in the magnetic field. The details are
in Appendix 3. The result is
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Ll = 16µ0N2

πφ1
2 a2
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2( )2

Sin2[2mφ1]
m3

(
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with Im
coil (r,a1,a2 ) and Im

iron (r,a1,a2 ) defined in appendix 3.

We apply the above relations to the magnets listed in Table 2 (except for the
TRISTAN quads, for which the above model is a poor approximation to the 4-shell
geometry), and to example designs for the CESR Q1 and Q2 quads: the results are given
in table 3. The example designs for Q1 and Q2 use the same wire parameters as in the
case of the LEP quads, with the coil id as listed in table 1, and the current required to give
the desired gradients. For the other cases, the currents are as specified in table 2, and the
gradients and fields are calculated  from the above equations, assuming a uniform current
density and a shell angle of 30o. The reason for this choice of shell angle is given in the
next section.

In table 3, the outer coil radius is calculated from the number of turns and the wire
area; the current density and gradient are calculated from equations above. The peak field
occurs near r=a1, and is calculated  from the field equations given above. The field in the
iron is the field at r=Re, at the same azimuth as that of the peak field (about 30o). In
general, in the table, the numbers in italics are calculated, the others are input.

Table 3
Model design parameters

Descriptor ISR
quads

LEP
quads

FNAL
quads

RHIC
quads

LEP200
quads

CESR
Q1

CESR
Q2

Turns/pole 290 184 275 27 200 200 200
Wire area
(mm2)

6.4 6.4 4.2 11.9 5.8 6.4 6.4

a1 (mm) 115 90 75 65 80 80 105
a2(mm) 143 112 100 74 104 106 126
Re(mm) 200 ----- 153 90 ----- ------ 175
I (amp) 1600 1600 905 5000 1900 1700 1700
g(T/m) 43 38.2 48 50 60 52 40
J(amp/mm2) 250 250 215 420 327 265 265
B-peak(T) 5.9 4.2 4.1 3.95 5.7 4.9 5.05
B-iron (T) 2.56 ---- 1.45 2.4 ----- ---- 2.27
length(m) .7 2 2.8 1.44 2 .6 .6
L(H) .27 .26 .88 .006 .3 .09 .114
W-stored
(kJ)

345 330 360 73 535 127 164

Figures 1 and 2 show contour plots of the magnitude of the fields vs. r and φ in the
model CESR Q1 and Q2 designs.
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4. Field quality in the body

The conventional expansion of the magnetic field in terms of normalized harmonic
coefficients bn  and an , is

Bφ (r,φ) = B0
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in which B0 is the “reference field”: for an n-pole magnet, the peak value of the n-pole
field at the reference radius, r0. In terms of the previously-developed expressions for the
magnetic fields, we can get expressions for the field harmonics for r<a1. The details are
given in Appendix 4. The result is 0 for bn, n odd, and an=0 for all n; for m=even, b2m=0;
for m odd,
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Choosing φ1 such that φ1 = π
2m0

, for the smallest allowed harmonic m0, will suppress

that harmonic due to the Sin(2mφ1) term in b2m. All harmonics which are integer
multiples of m0 are also suppressed. Thus, for m0 =3 in the quadrupole case, choosing

φ1 = π
6

 suppresses m=3, 9, 15, etc. This leaves m=5 and m=7 as the lowest non-zero

harmonics. Of course, this all assumes perfect quadrupole symmetry is maintained:
otherwise odd-n bn,  even-m b2m,  and skew terms an will arise.

One simple measure of the sensitivity of the harmonics to symmetry violations is
to let φ1 deviate from 30 o and calculate the resulting b6, and b18 terms. In table 4,  we
give, for the parameters for each quad listed in table 3, the calculated multipole
coefficients b2m, assuming the simple 30o shell geometry (which of course, no real
magnet has), and also the values of b6 and b18 if an error of 0.5 mm is made in the arc
length of the shell, causing it to deviate from 30o. The calculated errors are smaller than
those of an as-built magnet (shown in the last column), presumably due to minor design
differences,  manufacturing errors, and end effects, which can easily dominate the
“theoretical” body field errors. Nevertheless, the calculation is useful in getting a feel for
the expected error scale and tolerances required. The strong dependence on coil radius is
evident in the small numbers for the CESR Q2 magnet.

The field quality achieved, for example, for b6, for the LEP200 quads, was (on
average over 8 magnets) about 14x10-4 @ 59 mm12. In the model used for table 4, this
would correspond to an arc length error of about (14/21)*.5=.3 mm. If the CESR Q1 and
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Q2 quads were built to the same level of mechanical tolerance, the resulting b6 terms
would be (14/21)*10=7x10-4 @ 50 mm for Q1 and (14/21)*3=2x10-4 @ 50 mm for Q2.
Thus, the specified requirements of 5x10-4 @ 50 mm for Q1 and Q2 require tolerances
roughly the same as that achieved for the LEP200 quads.

This argument, of course, assumes all the errors are in the body. Actually, end
field errors may dominate, in which case the situation for the shorter CESR quads will be
worse.

Table 4

Harmonics x10
4

Quadrupole r0 (mm) b6
(δ=0.5
mm)

b10 b14 b18
(δ=0.5
mm)

bn
(typical)

ISR quads 65 -5 -7 .3 -.001 <40
LEP quads 50 -6.7 -7 .3 -.001 <30
CESR Q1 50 -10. -13.2 .85 -.006
CESR Q2 50 -2.9 -2 .05 0.
FNAL quads 50 -12 -20 1.5 -.015 <40
RHIC quads 40 -14. -18 1.4 -.018 5
LEP200 quads 59 -21. -57. 6.9 -.10 <20

5. Persistent current magnetization.

Long-lived eddy currents are induced within the superconducting filaments
(called "persistent currents") as a superconducting coil is energized. These currents flow
in such a way as to attempt to shield the interior of the superconducting filament from the
applied field. The persistent currents flow at the maximum current density which the
filament can support in the applied field at the operating temperature: this current density
is called the critical current density. At applied fields above a few tenths of a Tesla, the
persistent currents entirely fill the filament volume, flowing down one side of the
filament and back the other side. This current pair constitutes a magnetic dipole. The
overall net magnetization (magnetic moment per unit volume) from a single filament can

be shown
10

 to be

Mp = 4
3π

Jc (B)εa

in which Jc(B) is the critical current density, a is the radius of the filaments, and ε is the
fraction of the wire which is superconductor. In general, as discussed below, Jc(B) will
decrease with B.

The fields generated by these persistent currents will contribute to the field errors
discussed above. In general, the leading order field error due to the persistent currents
will be the first allowed harmonic (after that of the main field): that would be b6 (the
duodecapole moment) in the case of a quadrupole. The general scale of the relative errors
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generated by the persistent currents can be determined by calculating the ratio of the field
associated with the persistent current magnetization (µ0Mp) to a typical peak field:

δpc = 4µ0

3πB
Jc (B)εa

in which B is, for example, the peak field. The effect can be suppressed by reducing the

filament radius a, although not without limit
10

. In Table 5, I calculate this quantity for the
different quads. The filament sizes  and superconductor fraction (in the form of Cu:Sc
ratio) assumed are given in  table 5:  for FNAL, I just used the same as that for LEP
quads. The dependence of the critical current density on B, and its value at a reference B
and T, are taken as described in the next section.

 Table 5
Persistent Current  Magnetization

Quadrupole Filament
radius (µm)

Cu:Sc
ratio

Jc(Bpeak)
(A/mm2)

Bpeak
(T)

µ0Mp
(T)

δPC(x10
4
)

ISR quads 25 1.7 1038 5.9 .00513 8.7
LEP quads 18 1.7 1452 4.2 .00516 12.6
CESR Q1 18 1.7 1143 4.9 .00406 8.3
CESR Q2 18 1.7 1110 5.1 .00395 7.7
FNAL quads 18 1.8 1328 4.2 .00455 10.8
LEP 200
quads

20 1.7 1230 5.7 .00486 8.6

This simple calculation probably overestimates the magnitude of the effect. The
scale is typically that of the geometric errors. This problem is typically much worse in
magnets which must have a large dynamic range in field, because at low fields Jc(B)
increases, making δPC large: in this case the geometric multipoles are much smaller than
the persistent current multipoles. However, in the CESR quads, which are used only at
"full field", the problem should not be significant.  It should be noted that the persistent
currents die away on time scales of hours, leading to very slowing-varying error fields in

an accelerator. There are also hysteresis effects
10,12

.

6. Superconducting wire

The performance of the magnet is greatly dependent on the properties of the
superconducting wire. The standard choice is  wire fabricated from filaments of
superconductor, embedded in a copper (or aluminum) matrix. The filament diameter
should be small to suppress the persistent current effects noted above. The copper matrix
is required for reasonable cryogenic stability. The ratio of copper to superconductor in the
wire is the Cu:Sc ratio, typically around 1.5-2. The wire used for the LEP quads was
rectangular in cross section, 1.8 mm x 3.6 mm, with Cu:Sc of 1.7, and containg about
2000 36 µm diameter filaments.

The quadrupole coil could be wound directly from such wire (such as usually is
done for superconducting corrector magnets), or similar wires (usually called "strands" in
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this case) can be bundled in parallel to form cable. Cable has higher current-carrying
capacity and is favored in applications using long strings of magnets.

For the superconductor in the wire to remain in the superconducting state, the
current density carried by the superconductor must be below the "critical current density"
Jc. The critical current density is a function of temperature T, field applied to the wire B,
and the material properties intrinsic to the superconductor. Associated concepts are the
“critical field" Bc(T), which is the field at which the critical current density vanishes; and
the "critical temperature" Tc(B), which is the temperature at which the critical current
density vanishes.

The dependence of the critical temperature on field , and vice-versa, for NbTi
superconductor is10

Tc (B) = Tc (0)(1− B / Bc (0)).59

Bc (T) = Bc (0)(1− T / Tc (0)[ ]1.7
)

with B in Tesla and T in 
o
K.  For standard NbTi alloy, Bc(0) = 14.5 T and Tc(0) = 9.2 oK.

In terms of these, the dependence of Jc  on T and B is

Jc (B,T) = Jc (B0,T0 )
Tc (B) − T
Tc (B) − T0







Bc (T) − B
Bc (T) − B0







This relation breaks down for B< 4T but is OK for high fields. Unlike the quantities Bc(0)
Tc(0), which are the same for all NbTi samples, the quantity Jc (B0 ,T0 ) is a property
dependent on the metallurgy of the specific wire sample in question.

Table 6 gives examples of these quantities for the quads listed above. Tb is the
bath temperature of the coils. The wire parameters have been taken all to be that of the
LEP or LEP200 quads except for the RHIC case, in which the cable parameters were
used. The last column gives the critical current density at the peak field in the magnet.

Table 6
Critical Temperatures, Fields and Current Densities

Quadrupole T0
oK

B0
T

Jc0
A/mm2

Tb
oK

Bop=
Bpeak

T

Tc(Bop)
oK

Bc(Tb)
T

Jc(Bop,Tb)

A/mm2

ISR quads 4.2 5 1300 4.3 5.9 6.7 10.5 1038
LEP quads 4.2 5 1300 4.3 4.2 7.5 10.5 1452
CESR Q1 4.2 5 1300 4.6 4.9 7.2 10. 1143
CESR Q2 4.2 5 1300 4.6 5.1 7.1 10 1110
FNAL
quads

4.2 5 1300 4.6 4.2 7.5 10 1328

RHIC
quads

4.2 5.6 2300 4.6 3.9 7.6 10 2783

LEP 200
Quads

4.3 5 1400 4.3 5.7 6.8 10.5 1230
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The critical current for a given wire (or cable) is just the critical current density
times the area of superconductor. If the total wire area is A, and the copper-to-
superconductor ratio is ρ,  then the fraction of superconductor is

ε = 1
1 + ρ

 ,

and the critical current is
Ic (B,T) = Jc (B,T)εA.

As the operating current of a magnet is increased, the peak field B increases (along the
"load line"), according to

B = cI

where c is the transfer function. As B increases, the critical current decreases with B
according the equations above. When the operating current exceeds the critical current,
the magnet quenches. This value of Iquench is given by

Jc (cIquench ,Tb )εA = Iquench

Using

Jc (B,Tb ) = Jc (Bop,Tb )
(Bc (Tb ) − B)

(Bc (Tb ) − Bop )

which is approximately correct for B near Bop, we get

Iquench (Tb ) = Bc (Tb )

c +
Bc (Tb ) − Bop

Jc (Bop,Tb )εA

The margin at some operating current Iop is

mar(Tb ) =
Iquench (Tb ) − Iop

Iop

Another measure of the margin is the temperature difference ∆T between the bath
temperature and the temperature at which the margin is zero at the operating current.
Using

Jc (Bop,T) = Jc (Bop,Tb )
(Tc (Bop ) − T)

(Tc (Bop ) − Tc )
We get

∆T = (Tc (Bop ) − Tb )(1−
Iop

εAJc (Bop,Tb )
)

At Tbath+∆T, the current starts to flow in the copper as well as the superconductor, since

the latter has gone normal. Thus Tbath+∆T is called the "current-share" temperature.
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Larger values of ∆T are of course preferred, since this corresponds to less sensitivity to
sources of heat which can raise the local temperature enough to cause a quench.

These quantities are given in table 7 for the various quads.

Table 7
Current and temperature margins

Quadrupole Tbath
oK

Bpeak
T

Iop
A

Ic(Bop,Tb)
A/mm2

Iquench
A

margin
%

∆Τ
οK

ISR quads 4.3 5.9 1600 2460 1887 18 0.8
LEP quads 4.3 4.1 1600 3442 2365 47.8 1.7
CESR Q1 4.6 4.9 1700 2709 2097 23 1.
CESR Q2 4.6 5.1 1700 2633 2062 21.3 0.9
FNAL
quads

4.6 4.1 905 1992 1327 46 1.6

RHIC
quads

4.6 3.9 5000 11831 7690 53.8 1.7

LEP 200
quads

4.3 5.7 1900 2641 2182 15 0.7

One of the consequences of the imposition of solenodial field will be a reduction
in the quench current and the margin, since the operating field increases. However, except
at the ends of the solenoid and the quadrupole, the longitudinal solenoidal field is normal
to the radial and azimuthal quadrupole fields, so the operating field goes to

Bop → Bop
2 + Bsol

2

Table 8 shows the change in margin and quench current for two cases.

Table 8
Effect of solenoid field on margin

Quadrupole Bsol
T

Bop
T

Iop
A

Ic(Bop,Tb)
A

Iquench
A

margin
%

LEP quads .6 4.2 1600 3419 2360 46.9
CESR Q1 1.5 5.1 1700 2577 2037 19.8

Not much change is seen. However, near the end of the solenoid, if significant radial
and/or azimuthual fields develop, the situation could change rapidly in the CESR Q1
case.

7. Quench parameters

Quenches in superconducting magnets are generally caused by local heating (due,
for example, to frictional heat caused by conductor motion, or beam loss) which causes a
local region of the superconductor  to increase in temperature by more than the ∆T
calculated above. The local critical current density drops below the current density in the
wire, and a region of the conductor goes normal. Because of “flux-flow resistivity”11, the
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superconductor will continue to carry its critical current density, with the excess current
going to the copper matrix.

Energy begins to be dissipated by Joule heating both in the copper and the normal
NbTi.  In the normal region, Joule heating per unit volume occurs at a rate11

G(T) =
ρε2Jop Jop − Jc (Bop,T)[ ]

1− ε
in which Jop=Iop/εA, and ρ is the resistivity of the copper in the wire matrix. Using the
expression above for the temperature dependence of the critical current density, this
becomes

G(T) = Gc

T − (Tb + ∆T)[ ]
Tc (Bop ) − (Tb + ∆T)[ ]

Gc =
ρε2Jop

2

1− ε

For T>Tc(Bop), G(T) remains constant at Gc.

 Meanwhile, since the coil is still surrounded by LHe, some of the heat is
conducted away. Depending on the balance between heat production and heat transport,
the local region may shrink to zero (if the heat transport is sufficiently good) and the
whole coil becomes superconducting again; or, if the transport is not sufficient, the
normal zone will grow, generating more heat, and the whole magnet will eventually go
normal: this is a quench.

 If we assume that heat is transported from the wire to the LHe at a rate per unit
area

R(T) = h(T − Tb )

where h= heat transfer coefficient to LHe (in watts/m2/oK), then the balance between heat
transport from the wire and heat production (assuming Iop=Ic)  is measured by the “Stekly
parameter”:

α = GcA
Ph(Tc − Tb )

in which P is the cooled perimeter of the wire. For α >1, heat production exceeds cooling

and the normal zone spreads and the magnet quenches; for α<1, the normal zone shrinks
and no quench occurs. In the latter case, the magnet is said to be “cryostable”: it will
never quench under any circumstances. This condition is rarely satisfied in
superconducting magnets used for accelerators.

Using typical values for ρ (3x10-10 Ω−m) and h (1000 w/m2), Table 9 gives

values for Gc and α for the magnets. As can be seen, none are cryostable.

Conduction of heat longitudinally along the wire has been neglected in the
previous discussion. When one considers this, one finds that, even in a magnet which is
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not globally cryostable, if a sufficiently small region of the conductor goes normal, heat
conduction from this region to the rest of the wire can be sufficiently large to transport all
the heat generated in the small normal region away. In this case, the normal zone shrinks
and no quench occurs. The length of the “minimum propagating” zone in which heat
conduction just balances heat generation is given10 by

lmin = 2π λz (Tc − Tb )
Gc

in which λz is the heat conductivity along the wire( which is dominated by the heat
conductivity of the copper, since that of NbTi is several orders of magntiudude smaller).
λz has been taken to be 260 W/m/oK. Normal zones smaller than lminwill not propagate

longitudinally. Thus, local temperature rises greater than the temperture margin ∆T can
occur without causing a quench, provided they do so over lengths smaller than lmin.
Obviously, the larger lmin, the more stable the magnet--from this point of view, smaller
values of ε (more copper in the matrix) is preferred. Table 9 gives calculated values of
lmin.

Table 9
Cryostability parameters

Quadrupole Jop
(A/mm2)

P (mm) Gc(mwatt
/mm3)

α lmin (mm)

ISR quads 675 10.8 30 7.2 29
LEP quads 675 10.8 30 5.4 33
CESR Q1 717 10.8 34 7.6 28
CESR Q2 717 10.8 34 7.8 28
FNAL quads 603 7 22 4.5 37
RHIC quads 1176 73.5 82 4.4 19
LEP 200 quads 884 8.9 51 13 23

Because the magnets will not be globally cryostable,  the details of what happens
when the magnet quenches need to be considered.

During a quench, the stored energy in the magnetic field (1/2LI2) is dissipated: if
no measures are taken to bypass the current around the magnet (i.e., there is no quench
protection), this energy will all go into the magnet. The local, instantaneous energy per
unit volume dissipated by Joule heating will result in a rise in the temperature of the coil:

ρ(T)J2 (t)dt = C(T)dT

Here t is time, T is temperature, and C(T) is the material’s specific heat per unit volume.
Integrating both sides gives

J2 (t)dt
0

∞

∫ = C(T)dT
ρ(T)

T b

T max

∫ = F(Tmax )
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The peak temperature which is reached by the coil, Tmax, depends on the time integral of
the square of the current density, as well as material properties of the coil. The time
integral depends on how rapidly the quench develops. The quench develops by heat
conduction down the wire and radially through the insulation. A rapidly developing
quench spreads the energy over a large region of the coil and reduces Tmax.. The velocity
with which the quench propagates is 10

vz,r =
Jop

C

ρλz,r

Tc − Tb

in which λz,r is the longitudinal (radial) heat conductivity. Typically the radial
conductivity is much smaller than the longitudinal, because of the coil insulation.
Assuming simple forms for the dependence of F and ρ on temperature,

F(T) = F1

T
T1

    and    ρ(T) = ρ1

T
T1

a simple model10,11 of the quench development leads to the following result for the time
tQ, which is characteristic of the duration of the quench:

tQ = 90LF1
2A

4πJop
4 ρ1vr

2vz

6

in which L is the inductance of the magnet. In this simple model, the quenching zone
does not encounter any boundaries (like the coil edges radially, or the magnet ends
longitudinally). A better approximation, which includes the effects of coil boundaries11,
reduces the quench time to

′tQ = 2
15tatb

4 tQ

in which

ta = l
2vztQ

   and    tb = a2 − a1

2vrtQ

and l=magnet length.

Then the peak temperature in the coil  is

Tmax = T1

Jop
4 ′tQ

2

F1
2

In table 10, the longitudinal quench velocity, quench time, and maximum temperature
have been calculated for each magnet. The fixed parameters used have been T1= 100oK,
ρ1=3x10-9Ω-m,  F1=2.1x1016A2-sec/m4,  C= 5200 J/m3/oK,  λz= 260 w/m/oK, λr= .25
w/m/oK.
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Table 10
Quench parameters

Quadrupole vz (m/sec) ′tQ(sec) Τmax(oK) Vmax(V)

ISR quads 8.5 .75 492 700
LEP quads 7.4 .62 339 803
CESR Q1 8.8 .55 346 326
CESR Q2 8.9 .62 435 375
FNAL quads 6.8 .72 255 1328
RHIC quads 13 .23 381 152
LEP 200 quads 11 .42 450 1650

It is generally accepted that peak temperatures of up to 400oK are acceptable
during a quench, and pose no risk of damage to a magnet. Such a magnet thus needs no
scheme to bypass the current during a quench (quench protection) and is said to be “self-
protecting”. The CESR quads appear to be on the edge of qualifying as self-protecting. If
they can be designed to be self-protecting, this significantly simplifies the electrical
system for the magnets.

Actual measurements of Tmax in the LEP quads2 have given Tmax ~ 200o K.

The quench time tQ also sets the scale for the magnitude of the eddy current
forces induced in the beam tube during quench. The requirement of stability under this
load usually plays a role in the choice of beam tube thickness.

During a quench, as the field collapses, the magnet inductance is effectively
separated into two pieces by  the normal zone.11 Inductive voltages opposing the current
change are induced across the magnet pieces,  resulting in the peak voltage drop
appearing across the normal zone. The size of the voltage drop is related to the rapidity of
the quench, the magnet inductance and the operating current. The requirement on the
(turn-to-turn) breakdown voltage of the coil insulation is set by this voltage, so it is good
to minimize it. Under conservative assumptions11, the maximum voltage drop is

Vmax =
2.1LIop

tQ

tatb
4

Values of Vmax are shown in table 10.

Measurements in the LEP quads of the voltage across each coil have given Vmax
of 100-150 v. This is substantially less than indicated above.  In the CESR quads case,
voltages of no more than a few hundred volts should be expected.

8. Electrical system

The required currents for the CESR quads appear to be in the range of a 2000 A
power supply. The voltage requirement on the supply is principally determined by the
voltage drop in the normal bus connections, plus the inductive voltage required during
current changes. For L< 0.2 H, a tuning adjustment as specified in the RFP (3% ∆I in 10
sec) requires about 1.2 volts. The bus voltages drop would be, e.g., for 200 ft. of 6 200-
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MCM copper cables in parallel, about 3 volts. Thus a total voltage of 5 volts would
probably be sufficient (10 kW power supply).

Although voltages during a quench do not normally appear directly across the
magnet terminals, the power supply's insulation to ground should be rated for these
voltages-up to 500 volts.

Current regulation requirements at low frequencies can be estimated from tune
modulation considerations.  The tune shift δν due to a variation the focal length of a quad

at β is

δν = β
4π

δ 1
f

= β
4πf

δI
I

For example, for the quad Q1, 
1
f

= 1.7  m−1,   βv = 65 m so δν = 8.8
δI
I

. To limit tune

modulation to δν < 10-4, it is sufficient to have δΙ/Ι ≈  10−5.

Even if no quench protection is required for the magnet, the power supply should
have the ability to be turned off automatically after a quench, in a time on the order of the
quench time, in order to limit additional heating of the magnet when it is in its resistive
state.

9. Cryogenic system

The LEP quad cryostat refrigerator system provides, to some extent, a model for
what might be done in the CESR quads case.

The LEP quad cryostat was designed for a maximum internal pressure of 4 bar.
The shell was made from 304L stainless steel. No liquid nitrogen was used: the insulation
of the cold mass was provided by superinsulation and a vapor-cooled heat shield. This
presumably simplified the internal plumbing. The cold mass was cooled by pool-boiling
LHe at 1 bar. The vapor was passed through the heat shield, used to cool the power leads
(2000 A leads), and collected at room temperature. The total heat leak for the cryostat
(2.5 m long) was 13 watts, including the power leads. The helium inventory in the
cryostat was about 45 l. Quench relief was provided by a spring-loaded relief valve set at
3 bar;  apparently, not much He was lost during a quench.

 The total consumption of LHe can be estimated from

V̇l = Q̇
ρLD

in which V̇l  is the volume of He consumed per unit time by a heat leak Q̇ , LD is the

latent heat of vaporization, and ρ the density of liquid helium. For a 20 W heat leak, this
gives about 30 l/hour of LHe.

A similar system could be used for the CESR quads if the vapor could be
recovered and reliquified. Also, use of pool boiling He at atmospheric pressure would
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reduce the operating temperature to 4.3oK, increasing the margin in Q1 from 23% to
29%.

10. Mechanical issues-forces

The electromagnetic force per unit volume on the current density within the
magnet is (neglecting end effects)

  

r
Fv =

r
J ×

r
B = J0Brφ̂ − J0Bφ r̂

The force/length on an individual wire, of area A, carrying the current density J0, is

  

r
Fl (r,φ) =

r
FvA = J0ABr (r,φ)φ̂ − J0ABφ (r,φ)r̂   

Since Bφ varies like Cos(mφ) and Br varies like Sin(mφ), the azimuthal

component of the force is zero at φ=0 and maximum at φ=φ1. Since Br<0, it is in the (-φ)
direction, and it tries to compress the coil package azimuthally, pulling it away from the
coil stop at φ1. The radial component of the force is in the (+r) direction at r=a1, and the
(-r) direction at r=a2 (since Bφ changes sign across the radial extent of the coil). The
radial force compresses the coil package radially, and is strongest at φ=0.

The azimuthal force pulling the coil package from the coil stop must be restrained
to prevent wire motion. This is done by preloading the coil package sufficiently to ensure
that it remains in compression throughout the operating range of the magnet. The precise
value of the compressive preload required depends in detail on the elastic modulus of the
coil package and its supports, as well as on the electromagnetic forces. However, a crude
estimate of the scale of the compressive stresses can be obtained by computing the
electromagnetic pressure on a wire: this is approximately

  

r
p ≈

r
Fl

w

in which w = 4A
P

 is a rough measure of the width dimension of the wire (A=wire area,

P=wire perimeter).

Table 11 gives peak force/length and pressure for the various quads. Figures 3 and
4 show the azimuthal and radial force/length as a function of r and φ for the CESR Q1
case
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Table 11
Electromagnetic Forces

Quadrupole Azimuthal
force/length
(N/mm) r=a1,
φ=φ1.

Radial
force/length
(N/mm) r=a1,
φ=0

Azimuthal
pressure(N/m
m2) r=a1,
φ=φ1.

Radial
pressure
(N/mm2) r=a1,
φ=0

ISR quads 8.5 7.2 3.5 3.0
LEP quads 6.0 4.8 2.5 2.0
CESR Q1 7.5 6.2 3.2 2.6
CESR Q2 7.7 6.3 3.2 2.6
FNAL quads 3.3 2.9 1.4 1.2
LEP 200 quads 9.7 7.9 3.7 3.0

The actual azimuthal prestress used, for example, in the LEP200 quads12, was
about 35 N/mm2 (350 bar).

Poor training behavior is usually due to coil motion, and this may be related to
insufficient preload, although this is not always the case. Motion of the conductors in the
ends, where support is more difficult, is sometimes a problem. Support of the coils in the
ends is one of the more difficult mechanical problems in the fabrication of magnets. This
problem will be exacerbated by the presence of an axial solenoid field. In the coil body,
since such a field is parallel to the current, it exerts no force on the coils (although, as
noted above, it will reduce the margin). In the ends, the current has azimuthal
components, and hence there are radial forces on the coils even if the solenoid field is
purely axial. Typical values of the force on one “coil package” (1/4 of the quadrupole)
would be roughly

Fsol ≈ BsolNIa
π
4

= 1.5Tx200x1700Ax.08mx
π
4

= 3.2x104 N

This force, about 7000 lb., is in the radial direction. It tries to bend the coil ends in
and out (alternately).

If the solenoid fields are non-axial, then there are also forces in the body
of the magnet: in addition, the margin may be further decreased. In the design of these
magnets, it will be important to include the effects of the actual solenoidal field, based on
the best information available, early in the design process.

11. Conclusion

The CESR quadrupoles can be very similar in design to existing magnets
(particularly the LEP quads). The use of hundreds of turns of wire, rather than tens of
turns of cable, seems preferred into order to keep the operating current in the 1500-2000
A range. Field quality requirements are stringent, but should be achievable, particularly
for Q2. Persistent current multipole effects should be small at the operating point.
Margins in excess of 20% should be achievable, which should mitigate training issues.
The magnets will not be cryostable but may be self-protecting. The electrical system
requirements are relatively modest. About 30 l/hr of He will be required; He vapor
recovery would be very convenient. The use of pool-boiling He at atmospheric pressure
should be considered to increase the margin. Forces on the coils are not unusually large,
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but the presence of the solenoid field is a complication which needs to be included in the
initial design considerations.
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Appendices

Appendix 1: Vector potential for a single-shell quadrupole

We wish to evalute the integral

Az (r,φ) = ada
0

∞

∫ d ′φ
0

2π

∫ J(a, ′φ )
dAz (r,φ,a, ′φ )

dI

in which J and dAz/dI are given above in the text. The result will have the general form
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Az
coil (r,φ) = µ0J0

2π
1
nn=1

∞

∑ Rn (r,a1,a2 )Φn (φ,φ1)

in which

Φn (φ,φ1) = d ′φ
−φ1

φ1

∫ Cos[n(φ − ′φ )]+ d ′φ
π−φ1

π+φ1

∫ Cos[n(φ − ′φ )]

− d ′φ
π
2

−φ1

π
2

+φ1

∫ Cos[n(φ − ′φ )]− d ′φ
3π
2

−φ1

3π
2

+φ1

∫ Cos[n(φ − ′φ )]

= Re d ′φ
Exp{in(φ − ′φ )}+ Exp{in(φ − ′φ − π)}

−Exp{in(φ − ′φ − π
2

)}− Exp{in(φ − ′φ − 3π
2

)}















−φ1

φ1

∫

and

Rn (r,a1,a2 ) = ada
a1

a 2

∫
r
a







n

 for  r < a1

a
r







n

 for  r > a2



















= ada
a1

r

∫ r
a







n

+ ada
r

a 2

∫ a
r







n

 for  a1 < r < a2

The angular integral is

Φn (φ,φ1) = Re

(1+ Exp{−inπ}− Exp{−in
π
2

}− Exp{−in
3π
2

})

Exp{inφ} d ′φ Exp{−in ′φ }
−φ1

φ1

∫



















Φn (φ,φ1) = 2
n

Sin  nφ1 Re Exp{inφ}(1 + (−1)n )(1 − in )[ ]

=
8
n

Sin  nφ1Cos  nφ  ,  n = 2,6,10,...

0  otherwise













Equivalently, using n=2m,

Φm (φ,φ1) = 4
m

Sin  2mφ1Cos 2mφ,  m odd
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The radial integral is

For  r < a1  Rm (r,a1,a2 ) = r2

2 − 2m
r

a2











2m−2

− r
a1











2m−2









For  r > a2  Rm (r,a1,a2 ) = r2

2m + 2
a2

r






2m+2

− a1

r






2m+2





For  a1 < r < a2

Rm (r,a1,a2 ) = r2 1
2m + 2

− 1
2 − 2m





 + r2

2 − 2m
r

a2











2m−2

− r2

2m + 2
a1

r






2m+2

These equations are not valid for r<a2 and m=1: in this case, the results are

For  a1 < r < a2  Rm (r,a1,a2 ) = 1
4

r2 − a1
4

r2







+ r2 ln
a2

r

For  r < a1  Rm (r,a1,a2 ) = r2 ln
a2

a1

In terms of these integrals, then,

Az
coil (r,φ) = µ0J0

2π
1

2mm  odd
∑ Rm (r,a1,a2 )Φm (φ,φ1)

Appendix 2: Effects due to iron shell at r=Re

The effect of an iron shell at r=Re, centered at r=0, can be included as follows,  for
the case of  iron with a homogeneous, isotropic permeability µ.

Let there be a line current I at (a, ′φ ), located in a cylindrical cavity of inner radius

Re, centered at r=0, in an infinite iron block of permeability µ. Then the field inside the
cavity due to the iron is equivalent to that produced by an image line current of
magnitude ′I  located at ( ′a , ′φ ), where

′a = Re
2

a
 and  ′I = µ − µ0

µ + µ0

I .

For a quadrupole current distribution as described above within the cavity, the effect of
the iron inside the cavity is equivalent to a (non uniform) image current density

′J0 ( ′a ) = µ − µ0

µ + µ0

J0

Re
4

′a 4
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extending from  ′a2 = Re
2

a2

  to ′a1 = Re
2

a1

. This current density results in an additional

contribution to the vector potential,

Az
iron (r,φ) = µ0J0

2π
µ − µ0

µ + µ0

1
2mm  odd

∑ Rm
iron (r,a1,a2 )Φm (φ,φ1)

in which

 Rm
iron (r,a1,a2 ) =

r2 r
Re







4m

2m + 2
a2

r






2m+2

− a1

r






2m+2









The total vector potential for points inside the cavity in the iron is then

Az
tot (r,φ) = Az

coil (r,φ) + Az
iron (r,φ)

For a single line current I within the cavity at (a,φ'), the vector potential in the region in

the iron, r>Re, is that due to a line current I'' in the cavity at (a,φ'), where

I' ' = I
2

µ
µ0

µ + µ0

There is also an image line current at r=0, but when one considers the image current
distribution of a quadrupole current shell, which has net total current zero, the total image
current at r=0 sums to zero. Thus for r>Re, the vector potential is just

Az
tot (r,φ) =

2
µ
µ0

µ + µ0

Az
coil (r,φ)

Appendix 3: Inductance/length

The inductance per unit length of the magnet (Ll) can be calculated from these equations
using the expression for the energy stored in the magnetic field,

  
Wl = 1

2
rdr

0

∞

∫ dφ
r
J •

r
A

0

2π

∫ = 1
2

LlI
2

with

Az (r,φ) = µ0J0

2π
1

2m
(

m  odd
∑ Rm

coil (r,a1,a2 ) + µ − µ0

µ + µ0

Rm
iron (r,a1,a2 ))Φm (φ,φ1)

and J as given above in the text, we have
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Wl = µ0J0
2

4π
1

2m
(

m  odd
∑ Rm

coil (r,a1,a2 ) + µ − µ0

µ + µ0

Rm
iron (r,a1,a2 ))rdr

a1

a 2

∫

Re dφ
−φ1

φ1

∫ Exp(2imφ) 1+ Exp(−2πim) − Exp(−πim) − Exp(−3πim)[ ]

4
m

Sin[2mφ1]

The angular integral is

Sin[2mφ1]
m

(1− (−1)m ) = 2Sin[2mφ1]
m

 for  m odd

The radial integral is

Im
coil = Rm

coil (r,a1,a2 )rdr
a1

a 2

∫ = a2
4 (2m − 2 − (2m + 2)r4 + 4r2m+2 )

2(2m − 2)(2m + 2)
  for  m ≠ 1

= a2
4 (1+ r4 (4Log(r) −1))

8
 for  m = 1

Im
iron = Rm

iron (r,a1,a2 )rdr
a1

a 2

∫ = a2
4 (r2m+2 −1)2

(2m + 2)2

a2

Re







4m

in which r = a1

a2 .
Then

Wl = 2µ0J0
2

π
Sin2[2mφ1]

m3 (
m  odd
∑ Im

coil (r,a1,a2 ) + µ − µ0

µ + µ0

Im
iron (r,a1,a2 ))

Using  J0 = 2NI
φ1 a2

2 − a1
2( )  we get

Wl = 8µ0N2I2

πφ1
2 a2

2 − a1
2( )2

Sin2[2mφ1]
m3 (

m  odd
∑ Im

coil (r,a1,a2 ) + µ − µ0

µ + µ0

Im
iron (r,a1,a2 ))

so

Ll = 16µ0N2

πφ1
2 a2

2 − a1
2( )2

Sin2[2mφ1]
m3 (

m  odd
∑ Im

coil (r,a1,a2 ) + µ − µ0

µ + µ0

Im
iron (r,a1,a2 ))
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Appendix 4: Field harmonics

Using

Bφ (r,φ) = − µ0J0

4π
1
mm  odd

∑ dRm (r,a1,a2 )
dr

Φm (φ,φ1)

and

Φm (φ,φ1) = 4
m

Sin  2mφ1Cos 2mφ,

and

Rm (r,a1,a2 ) = r2m a2
2−2m − a1

2−2m( )
2 − 2m

+ µ − µ0

µ + µ0

a2
2m+2 − a1

2m+2[ ] 1
Re







4m

2m + 2

















= r2ms(m)
We get

Bφ (r,φ) = − 2µ0J0

π
r2m−1s(m)

mm  odd
∑ Sin  2mφ1Cos 2mφ

The reference field is

B0 = − 2µ0J0

π
r0s(1)Sin  2φ1

so

Bφ (r,φ) = B0

r0s(1)Sin  2φ1

r2m−1s(m)
mm  odd

∑ Sin  2mφ1Cos 2mφ

Equating like coefficients of the harmonic functions, we conclude that bn=0 for n even,
and an=0 for all n; otherwise,  b2m=0 for m even, and for m odd,

r
r0











2m−1

B0b2m = B0

r0s(1)Sin  2φ1

r2m−1s(m)
m

Sin  2mφ1 ,

b2m = r0
2m−2 s(m)

ms(1)
Sin  2mφ1

Sin  2φ1

in which

s(m)
ms(1)

=

a2
2−2m − a1

2−2m( )
2 − 2m

+ µ − µ0

µ + µ0

a2
2m+2 − a1

2m+2[ ] 1
Re







4m

2m + 2

















m ln
a2

a1

+ µ − µ0

µ + µ0

a2
4 − a1

4[ ]
4Re

4












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Using a2 = a1(1+ ∆a
a1

), and keeping terms of first order in ∆a/a1 only, gives

s(m)
ms(1)

≈
a1

2−2m + µ − µ0

µ + µ0

a1
2m+2

Re
4m









m 1+ µ − µ0

µ + µ0

a1
4

Re
4









and so

b2m =

r0

a1











2m−2

+ µ − µ0

µ + µ0

a1r0

Re
2







2m
a1

r0







2











m 1+ µ − µ0

µ + µ0

a1
4

Re
4









Sin  2mφ1

Sin  2φ1


