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1 Introduction

Recently S. Koscielniak and H. J. Tran[1] have shown that one can obtain more
damping in a transverse damping system if the feedback is driven into saturation. The
damping in this case is linear (as opposed to exponential) and Koscielniak and Tran
derived an approximate expression for the damping rate in this case. The purpose of
this note is to derive the exact damping rate and compare it with the damping for
the unsaturated case.

2 Theory

At the pickup of the feedback system let (xp; x0p) be the transverse coordinates of
the centroid of the bunch and let (xk; x0k) be the centroid coordinates at the kicker.
At the PU

xp = a
q
�p cos p : (1)

At the kicker

xk = a
q
�k cos k : (2)

x0k =
ap
�k

[� sin k � �k cos k] : (3)

The phase advance between the PU and the kicker is � so

 k =  p +� : (4)

The kick �x0k given to the bunch at the kicker will be some function of the pickup
signal:

�x0k = K(xp) : (5)

From Eqs. (2) and (3) the amplitude a is given by the standard formula

a2 = k x
2

k + 2�k xk x
0

k + �k x
02

k : (6)
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Using Eqs. (5) and (6) the change in a due to a kick is

�a =
�k xk + �kx

0

k

a
K(xp) : (7)

Assuming that jK(xp)j � a=
p
�k the e�ect of the kicks can be ignored to 0th order.

To 0th order then  k is uniformly distributed over the interval 0 to 2� and the average
change a is obtained by averaging Eq. (7) over  k. Using this with Eqs. (2) and (3)
gives

h�ai = �1
2�

Z
2�

0

d k
q
�k sin  k K(xp) : (8)

The average phase advance due to the kicks can be similarly computed: From
Eqs. (2) and (3) the phase angle is given by

tan k = ��k x
0

k + �k xk
xk

: (9)

Using Eqs. (5) and (9) the change in  k due to a kick is

� =
�p�k cos k

a
K(xp) : (10)

In analogy with Eq. (8) the average phase advance per turn due to the kicks is

h� i = �1
2�

Z
2�

0

d k

p
�k cos k
a

K(xp) : (11)

Equations (8) and (11) are the basic formulas for deriving the damping and tune
shifts due to the feedback.

3 Proportional Kick Case

For a non-saturated feedback system the kick is

�x0k = k xp : (12)

Using Eqs. (1) (4), and (12) in Eqs. (8) and (11) gives

h�ai
a

=
�k
2

q
�p �k sin� ; (13)

h� i= �k
2

q
�p �k cos� : (14)

The damping is exponential as expected and is at a maximum when � = �=2. The
phase shift is in general non-zero except at the optimum phase advance of � = �=2.
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4 Saturated Kick Case

For a saturated feedback system the kick is

�x0k =
�
C xp > 0
�C xp < 0

: (15)

Using Eqs. (1) and (4), and (15) in Eqs. (8) and (11) gives

h�ai = �2C
�

q
�k sin � ; (16)

h� i = �2C
a�

q
�k cos� : (17)

The damping is linear and is at a maximum when � = �=2. Like the non-saturated
case the phase shift is in general non-zero except at the optimum phase advance of
� = �=2.

To compare the damping in the proportional kick case to the damping in the
saturated kick case consider the situation where the system is just starting to saturate.
For a proportional kick the maximum kick is obtained from Eqs. (1) and (12) to be

�x0kjmax = k xpjmax = k a
q
�p. When the system is just saturating this maximum kick

is just �x0kjmax = C. Using this in Eqs. (13) and (16) gives the damping ratio between
the saturated and non-saturated cases

h�ai
sat

h�ainonsat
=

4

�
: (18)

Thus the saturated system gives about 25% more damping. The real advantage

of the saturated system comes about when C > k a
q
�p. That is, it always pays

to increase the gain of the system up to the point where the kicks are comparable
to the bunch oscillation amplitude. At this point the assumption made to derive
Eq. (7) that jK(xp)j � a=

p
�k breaks down and the feedback will act as a source

of noise for the beam (i.e. the feedback will act as a `heat bath' keeping the beam's
amplitude roughly constant). Another way of looking at this is to note that when
the kicks become comparable to the bunch oscillation amplitude the closed loop gain
of the system is approaching 1. For the proportional gain case this occurs when

k � 1=
q
�p �k and for the saturated case it is when C � a=

p
�k.

Given the above considerations one can design the optimum kick function which
would have the largest linear slope for small xp consistent with the requirement that
the closed loop gain be smaller than 1. This `optimum' kick function would then be

�x0k =

8>>>>>>><
>>>>>>>:

gq
�p �k

xp jxpj �
p

�p �k C

g

C xp >

p
�p �k C

g

�C xp <
�

p
�p �k C

g

: (19)
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Where g > 1 is some factor to keep the closed loop gain below unity, say g � 10.
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