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The Dynamic Beta E�ect in CESR
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Introduction

In a colliding beam storage ring the Twiss parameters are a�ected by the quadru-
polar focusing of the beam{beam interaction. Like any quadrupole error this `dynamic
beta' e�ect is enhanced by running near a half{integer or integer resonance. The
recent change in the operating point of CESR so that the horizontal tune is just above
a half{integer resonance has resulted in the dynamic beta e�ect having a noticeable
e�ect on CESR operation. Under current colliding beam conditions the resulting
change in horizontal beta has exceeded ��x=�x = 0:5.

In order to keep the notation as simple as possible while minimizing possible
confusion, the following conventions have been adopted:

� Unless explicitly noted otherwise all Twiss parameters and beam sizes refer to
the IP.

� A subscript of `0' denotes quantities calculated without the beam{beam inter-
action. For example, �0 refers to the `unperturbed' beta.

� Since the electron and positron bunch currents or sizes can be di�erent, their
e�ect on one another will not be symmetric (although in practice this asymme-
try is usually small). Through the beam{beam interaction, this will result in
di�erent Twiss parameters and di�erent beam sizes for each beam. `+' and `�'
subscripts will be used to refer to the positron and electron beams respectively.

� `Repeating' subscripts will be dropped from equations. For example, if Eq. (1)
is applied to the horizontal plane for positrons, then all the variables get the
subscript `x+'. Notice that without the beam{beam interaction it is assumed
that the electrons and positrons have identical properties so that, for example,
�x0 � �x0+ � �x0�.
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Analysis

Following Chao[1] the dynamic beta e�ect can be analyzed by writing the 1{turn
transfer matrix from IP to IP as 
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where the beam{beam interaction strength of 1=f is given by

1

fx+
=

2N�re
�x�(�x� + �y�)

; (2)

with analogous formulas for fx�, fy+, and fy�. The beam{beam parameter � is de�ned
by

� � �0
4�f

: (3)

� is just the focusing strength of one beam on the other normalized by �0. It is
sometimes convenient to de�ne another beam{beam parameter � by

� � �

4�f
=

�

�0
� : (4)

Combining Eqs. (1), (2), (3), and (4) gives
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Eliminating � from Eqs. (5) and (7) gives

�

�0
=
�
1� (2��)2 + 2(2��) cot �0

�
�1=2

: (8)

Alternatively, in terms of �, one �nds

�

�0
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s
1 +

(2��)2

sin2 �0
� (2��) cot�0 : (9)

Figure 1 shows �=�0 as calculated from Eq. (8) as a function of Q0 � �0=2� for
three di�erent values of �. As can be seen from the �gure, the dynamic beta e�ect
is enhanced (large deviation of �=�0 from 1) when �0 is near an integer or half{
integer as expected. Furthermore, from the �gure, it is seen that for tunes just above
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Figure 1: � relative to �0 as a function of tune for three di�erent values of �. The
top scale shows the tune in kHz.

a integer or half{integer resonance the dynamic beta e�ect causes a reduction in �.
This, of course, is what is desired for increased luminosity. As an example, the current
operating point has a design horizontal tune of Qx0 = 10:52 (204 kHzfractional tune).
Under the assumption that � is in the vicinity of 0.03 (see below), this implies that
there is a large reduction in beta of �x=�x0 � 0:5. Additionally, with the present
vertical tune of Qy0 = 9:60 (233 kHzfractional tune), the reduction in vertical beta is
�y=�y0 � 0:8.

Along with the change in � at the IP there will also be a beta{wave throughout
the ring. The calculation of the beta{wave is straightforward. Given the unperturbed
Twiss parameters at some point s in the ring, the unperturbed transfer matrix from
IP to s is[2]
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�
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where �0(s) is the unperturbed phase advance from the IP to point s and the fact
that �0(IP) = 0 has been used. Given any transfer matrixM, the transfer matrix for
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the Twiss parameters is[2]
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Using the beam{beam kick matrix from Eq. (1) along with Eqs. (10), and (11) the
beta function with the beam{beam interaction is

�(s) = �(IP)
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If the beam{beam interaction is small enough one can use �rst order perturbation
theory (cf. Sands[3] Eq. 2.105) to obtain more simply
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Evaluating Eq. (13) at the IP gives
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Combining Eqs. (13) and (14) then gives
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As an example, with the present horizontal tune of Qx0 = 10:52, the horizontal
beta{wave is roughly given by

��x(s)

�0x(s)
� �0:5 cos(2�x0(s)� �x0) : (16)

One consequence of this beta{wave is that it changes the emittance function Hx(s)
(Sands[3] Eq. 5.71)

Hx(s) =
1

�x
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�x�

0 � 1

2
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�2)
; (17)

and this will a�ect the horizontal emittance (see below).

With the present vertical tune of Qy0 = 9:60, the vertical beta{wave is not as
large as the horizontal and can be approximated by

��y(s)

�0y(s)
� �0:2 cos(2�y0(s)� �y0) : (18)
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Synch Light Luminosity Calculation

One result of the dynamic beta e�ect is that it throws o� the luminosity as calcu-
lated from the vertical beam heights observed at the electron and positron synch light
monitors. As will be shown, this can be used to verify the presence of the dynamic
beta e�ect. The luminosity is calculated from the vertical beam size by using the
formula

L =
frev

4��x�y

nbunchX
i=1

Ni+Ni� ; (19)

where frev is the revolution frequency, nbunch is the number of bunches, and Ni� and
Ni+ are the number of positrons and electrons respectively in the ith bunch. To take
into account the fact that the beam sigmas will be di�erent, �x and �y in Eq. (19) are
de�ned by the overlap integral between the two beams. For example, �x is de�ned by
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Eq. (20) is easily integrated. The general result for either the horizontal or vertical
planes is
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(�2

+ + �2
�)

2
: (21)

The beam sigmas �x+, �x�, �y+, and �y� are calculated from the equations

�x =
q
�x�x ; (22)

and

�y = �y(ls) �
vuut�y(IP)

�y(ls)
; (23)

where (ls) stands for the light source point. If the dynamic dynamic beta e�ect is
ignored then the unperturbed values for �x, �x, and �y are used in Eqs. (22) and
(23). Taking the dynamic beta e�ect into account complicates the calculation since
a closed formula does not exist for the �x or the �y. Fortunately, as outlined below,
a relatively simple iterative method is e�ective for obtaining the beam sigmas.

Since the synch light monitors only gives beam heights averaged over all the
bunches, the dynamic beta calculation outlined below calculates a single value for
the beam sigmas based on the average electron and average positron bunch currents.
With dynamic beta the beam size calculation starts with the horizontal plane. The
procedure is as follows:

Step 0: Initial values are chosen (guessed at) for the �x and the �y,
and the dependence of �x as a function of �x is calculated using the
detailed lattice for the ring.
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Step 1: Calculate �x+ and �x� from Eqs. (2) and (3).

Step 2: Calculate �x+ and �x� from Eq. (8).

Step 3: Calculate �x+ and �x� from the curve of �x verses �x.

Step 4: Calculate �x+ and �x� from Eq. (22).

Step 5: If the �x have not changed by more than 0.1% then continue
with step 6. Otherwise loop back to step 1.

Step 6: Calculate �x from Eq. (21).

Notice that only an inexact value for �y is used by the horizontal calculation. This is
acceptable since the horizontal dynamic beta is only weakly a�ected by errors in �y.
After the horizontal calculation the vertical calculation proceeds as follows:

Step 1: Calculate �y+ and �y� from Eqs. (2) and (3).

Step 2: Calculate �y+ and �y� from Eq. (8).

Step 3: Calculate �y(ls+) and �y(ls�) from Eq. (12)

Step 4: Calculate �y+ and �y� from Eq. (23).

Step 5: If the �y have not changed by more than 0.1% then continue
with step 6. Otherwise loop back to step 1.

Step 6: Calculate �y from Eq. (21).

Since � is only weakly dependent upon � (cf. �gure 1) the convergence for both
the horizontal and vertical calculations is quite rapid and usually takes only a few
iterations. Note that while � has been used in the above procedure, with minor
modi�cations � could have just as easily been used instead. One minor detail: In
the results presented below the values for Ni+ and Ni� as obtained from the beam
button monitors have been scaled by an overall factor in order that their sum agrees
with the CERN current monitor.

Figures 2 through 8 show the results of a dynamic beta calculation using data
from two days of HEP running. In order to minimize possible abnormalities in the
data the criterion for selecting the days for analysis was that there was relatively
good luminosity on the day chosen and on the days just previous to the chosen day
(e.g. days just after a start{up were avoided). The �rst day chosen was April 14,
1994 (Julian day 104). The lattice used on this date was C9A18A000.GE92S 4S. The
second day chosen was August 1, 1994 (Julian day 213). The lattice used on this date
was N9A18A600.FD92S 4S. The relevant parameters for both lattices are given in
tables 1 and 2. The C9A18A000.GE92S 4S lattice has relatively high fractional tunes
compared to the N9A18A600.FD92S 4S lattice and thus would not be expected to be
a�ected as much by dynamic beta. For each day the luminosity and related parame-
ters were calculated every 5 minutes and in the �gures the parameters are plotted as
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Table 1: C9A18A000.GE92S 4S

Parameter Value
Qx0 10.5736 (225 kHz frac. tune)
Qy0 9.6302 (246 kHz frac. tune)
�x0 1.0023m
�y0 0.0179m
�x0 0.226�m�rad
�x0 476�m
 1:035 � 104

Nbunches 7
frev 2.56�s

Table 2: N9A18A600.FD92S 4S

Parameter Value
Qx0 10.5235 (204.2 kHz frac. tune)
Qy0 9.5971 (233 kHz frac. tune)
�x0 1.0865m
�y0 0.0182m
�x0 0.200�m�rad
�x0 467�m
 1:035 � 104

Nbunches 7
frev 2.56�s

a function of the total positron plus electron current. Figure 2 shows the luminosity
as a function of total current. The three sets of data shown correspond to: A) Data
from the CLEO detector which (presumably) gives the correct luminosity, B) The
luminosity as calculated from the synch light monitors neglecting the dynamic beta
e�ect, and C) The luminosity as calculated from the synch light monitors including
the dynamic beta e�ect. In each graph there is a noticeable di�erence between ne-
glecting and not neglecting the dynamic beta e�ect. For the C9A18A000.GE92S 4S
run the three curves are too close together (i.e. the magnitude of the dynamic beta
e�ect is too small) to make any conclusions. For the N9A18A600.FD92S 4S run,
however, it is clear that one must take the dynamic beta e�ect into account. For the
N9A18A600.FD92S 4S run the remaining di�erence between the CLEO luminosity
and the calculation with the dynamic beta e�ect can be attributed to a number of
factors: (1) The actual tunes will di�er somewhat from the design tunes but it is the
design tunes that are used in the calculation. (2) The hourglass e�ect[6] will reduce
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the actual luminosity relative to the calculated value. (3) Any vertical dispersion at
the synch light ports makes the vertical betatron size seem bigger than actual and
this increases the actual luminosity relative to the calculated. (4) Finally, there is
always the possibility of a resonant blowup in �x due to the non{linear part of the
beam{beam interaction.

Figure 3 shows the average beta h�i � (�++��)=2 normalized by the unperturbed
beta as a function of total current. Since the horizontal tune is always closer to
the half{integer resonance the reduction in h�xi is always larger than h�yi. For the
N9A18A600.FD92S 4S run the reduction in h�xi is quite dramatic, being over a factor
of 2 at the larger currents. This is opposite of what happens to the average horizontal
emittance h�xi � (�x+ + �x�)=2 as shown in Figure 4. For both lattices h�xi is an
increasing function of �x as shown in �gure 5. The result is that the drop in �x is
partially o�set by the rise in �x producing a �x with only a weak current dependence
as shown in �gure 6. [Note that for �gure 6 �y0 is taken to be the sigma as calculated
from Eq. (23) using the unperturbed beta. This is not the same as the sigma that
one expects without the beam{beam interaction.]

The di�erence between �, �, and �Q � (� � �0)=2� is shown in �gures 7 and 8
as a function of total current. For the C9A18A000.GE92S 4S run the tunes are far
enough away from the half{integer resonance so that the dynamic beta e�ect is small
and � � � � �Q. On the other hand, for the N9A18A600.FD92S 4S run, �x is clearly
closer to �Qx than �x. Notice that for the N9A18A600.FD92S 4S run �x shows no
signs of saturation and reaches a level of 0.05 at the highest current levels. �Qx and
�x, on the other hand, show some signs of saturation at the highest current levels
and stay within the `normal range' of less than 0.03 or so. This is in accord with the
standard argument[4] that since a measure of the strength of the beam{beam force
is the shift of the tune �Q, and since the beam{beam induced resonances limit the
performance of the machine, that for �Q there is a `saturation limit' above which
one cannot go without the beams falling out or the beams blowing up (which lowers
�Q back to its limiting value). That � is a better approximation to �Q than � is
a general feature as shown in �gure 9. In �gure 9, Eqs. (4), (5), and (8) have been
used to graph �, �, and �Q as functions of Q0 with � somewhat arbitrarily �xed at
a value of 0.04. Over the range of Q0 from 0.5 to 0.6, which is the range where one
would like to operate to take advantage of the dynamic beta e�ect, � is clearly closer
to �Q than �.
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Figure 2: Luminocity as a function of total current for two days of HEP running.
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Figure 3: Average beta h�i � (�+ + ��)=2 normalized by �0 as a function of total
current.
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Figure 4: Average horizontal emittance h�xi � (�x+ + �x�)=2 normalized by �x0 as a
function of total current.
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Figure 5: Horizontal emittance as a function of beam{beam parameter �x for the
N9A18A600.FD92S 4S and C9A18A000.GE92S 4S lattices.
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Figure 6: Average beam sigma h�i � (�+ + ��)=2 normalized by �0 as a function of
total current.
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Figure 7: Average h�xi, h�xi, and h�Qxi as a function of total current.
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Figure 8: Average h�yi, h�yi, and h�Qyi as a function of total current.
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Figure 9: �, �, and �Q as functions of Q0 with � somewhat arbitrarily �xed at 0:04.
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Amplitude dependence

In terms of single particle dynamics the beam{beam force is nonlinear beyond 1�
either horizontally or vertically. The fact that the beam{beam force starts to fall
o� beyond 1� results in a monotonic decrease of the e�ective quadrupolar focusing
strength with increasing particle oscillation amplitude. This results in the dynamic
beta e�ect being amplitude{dependent with large amplitude particles being relatively
una�ected by the dynamic beta e�ect. This implies that the deleterious e�ects of
reduced single particle lifetime that are associated with a lower �(IP) are not present
with dynamic beta. In other words, the dynamic beta e�ect is materially di�erent
from using a lattice with a lower �(IP).

The amplitude dependence of the dynamic beta e�ect was explored with a simple
1{dimensional tracking program. The procedure was as follows: The one turn trans-
port map from IP to IP was taken to have the same form as the right hand side of
Eq. (1) with the �1=2f kick terms replaced with the full amplitude dependent beam{
beam kick as given by the complex error function formula of Bassetti and Erskine[5].
Particles were seeded at di�erent amplitudes and tracked for 300 turns. For a single
particle the resulting motion in phase space was �tted to an ellipse and a value for
� extracted. Figure 10 shows the dependence of �=�0 on oscillation amplitude A for
both the horizontal and vertical planes. As can be seen, � is insensitive to changes in
amplitude for the particles with oscillation amplitudes below about 2�. This implies

Figure 10: Relative beta as a function of oscillation amplitude for both the horizontal
plane (solid line) and the vertical plane (dashed line).
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that the amplitude dependent e�ects on the luminosity are small. In the tails of the
beam, where Ax >� 10�x or Ay >� 50�y, the dynamic beta e�ect is seen to be small.

Luminosity Considerations

From �gure 5 it is seen that for the particular lattices considered �x is an increasing
function of �x. It can be argued that this increase in �x with increasing �x results
in an increased �x with an attendant decrease in luminosity. One possibility then
for increasing luminosity is to design a lattice in which �x decreases with increasing
�x. Unfortunately, this might not be practical in CESR. To see this, consider Hx(s)
as given by Eq. (17). The dynamic beta e�ect does not a�ect �(s) or the damping
partition numbers since the IP is in a dispersion free zone. The e�ect of dynamic
beta upon �x is thus through the beta{wave that is generated. In order to make �x
be a decreasing function of �x one would have to change where in the lattice �x is
increased and where it is decreased. From Eq. (15), since �0 is con�ned to be near
a half{integer (we want to have a signi�cant dynamic beta), the only way to shift
the beta{wave is to shift around the phase advance �x0(s). To shift �x0(s), however,
would change where the pretzel maxima are. It is therefore not clear (at least not at
this point in time) whether a decreasing �x is compatible with multibunch operation.

Another tactic for increasing L might be to run with �y nearer to the half{integer
instead of �x. The reason for this is contained in the equation

L =
I�y (1 + r)

2ere�y0
; (24)

where r = �y=�x. Using the dynamic beta e�ect it could be argued that one should be
able to increase �y above the traditional limit in CESR of 0.03 to 0.04. The problem
is that the hourglass e�ect[6] is non-negligible in CESR so with �y comparable to �z
it is not clear that using the dynamic beta e�ect to increase �y and lower �y is helpful
to the luminosity without simultaneously lowering �z. Additionally, it is not clear
that �Qy is the limiting factor with the current conditions. This is especially true
since the crossing angle increases the horizontal resonance strengths faster than the
vertical resonance strengths. Experimentally it was found awhile back that switching
to a lattice where the vertical tune was closer to the half{integer made things worse.
Operationally, however, conditions have changed since that experiment (for one we
now have a crossing angle) and therefore, like the stock market, past experience is
not necessarily indicative of future performance.

Simulations are one possible way to try to understand how having �y near the half{
integer will a�ect luminosity. Unfortunately, the beta{wave generated by the dynamic
beta e�ect may a�ect coupling compensation, etc. Ultimately machine studies will
have to be done if an answer is to be obtained.
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