

No CHAMPs at DØ

Flip Tanedo

Presenting: 0809.4472

7 December 2009 Physics 7661, Fall 2009 Collider Physics

WTF is a CHAMP

Kobe Bryant

- 4x NBA CHAMPion
- 2009 NBA Finals MVP
- 2008 NBA MVP
- IIx NBA All-Star
- 2x scoring CHAMPion
- 1997 Slam Dunk CHAMPion

Game-winning buzzer-beating 3-point shot last Friday against the Miami Heat. LAL 108, MIA 107.

WTF is a CHAMP Experimentalist definition

- Long-Lived Charged Massive Particle
- Massive Metastable Charged Particle
- Heavy Stable Charged Particle
- Charged Massive Stable Particles

Summary: charged shit that makes it out of the collider before decaying

WTF is a CHAMP Standard Model examples

- Approximately conserved quantum number e.g. electron, proton
- Suppressed effective coupling
 e.g. muon (e.g. μ→eγ... man, I hate that process)
- Suppressed phase space
 e.g. neutron (I know: not charged, STFU)

WTF is a CHAMP Theorist's definition

- GMSB: gravitino LSP, so NLSP may be charged e.g. third-generation sfermion (stau)
- AMSB: with M_2 « M_1 « M_3 , small splitting between χ^+ and χ^0
- Focus point CMSSM: M_{1,2} » μ, degenerate
 Higgsino LSP and Higgsino-lke NLSP
- Split-SUSY: very large squark mass metastable gluino

WTF is a CHAMP Collider definition

Let's make some simplifying assumptions

- Only consider electric charge
- Colored charges are a different story (R-hadron)
- Also assume CHAMPs are pair produced i.e. ignore cascade decays (for simplicity)

Pair production: LEP gives a model-independent-ish M > 100 GeV bound from $Z \rightarrow (CHAMP)^2$

WTF is a CHAMP Collider definition

Signature looks just like a heavy muon

- Muon chamber hit with associated ECAL tracks
- Large invariant mass (& high p_T)
- 2. Slow velocity (time of flight measurement)

Time of flight? We can measure that?

The Muon System

Different times of flight for particles at different polar angles are compensated for by varying cable lengths since the front-end electronics do not allow such timing adjustments.

Source: D0 Run II TDR, Nucl.Instrum.Meth.A565:463-537,2006; arXiv:physics/0507191

The Muon System

Different times of flight for particles at different polar angles are compensated for by varying cable lengths since the front-end electronics do not allow such timing adjustments.

Source: D0 Run II TDR, Nucl.Instrum.Meth.A565:463-537,2006; arXiv:physics/0507191

Cuts and BG

- 2 "muons" with $p_T > 20 \text{ GeV}$
- At least one track is 'collimated' (E_T, p_T)
 Reducible BG: mesons
- Acolinear, outward moving muons Reducible BG: cosmic rays (very bad!)
- Sufficiently close to the beamline
 Reducible BG: Bs, beam halo, cosmic rays
- Irreducible BG: mismeasurements

Background Simulation

- Randomly combine separate distributions of invariant mass and velocity Central tracker is independent of muon chamber
- Velocity BG: 'events' invariant mass in Z peak: 70 - 110 GeV, passes other cuts This is why the pair production assumption is useful
- Invariant mass BG: negative velocity events
- Subtle: modeling BG from the data itself.
 Chosing randomly from separate data sets gives us decorrelated background simulation.

Data vs. Monte Carlo

150

200

Charged Higgsino Mass [GeV]

250

300

100

10⁻³ 50

Raklev, 0908.0315

Bethe-Bloch

Signatures depend on interaction with detector

CHAMP charge
$$\langle -\frac{dE}{dx} \rangle = \frac{Kz^2Z}{A\beta^2} \left(\frac{1}{2} \ln \frac{2m_ec^2\beta^2\gamma^2T_{\rm max}^{\downarrow}}{I^2} - \beta^2 - \frac{\delta}{2} \right)$$
CHAMP velocity depends on β .

- Energy loss is almost independent of CHAMP mass
- ullet So we can use the tracking system and treat CHAMP as μ
- p measurement in central tracker + β measurement from μ system = m measurement
- But: software assumes β =1, track fit is poor for β <0.75 Can treat β as an additional fit parameter, good to β >0.5

Raklev, 0908.0315

A CONTRACTOR OF THE PARTY OF TH

Other CHAMPs

- UED with KK-parity
- RS with GUT-parity
- DSB (quantum numbers)
- Leptoquarks
- Additional generations
- Magnetic Monopoles

CHAMP Cosmology

- Hard to get a viable dark matter CHAMP
- Strong constraints from, e.g, BBN, CMB, ...
 CHAMP decay injects energetic particles into the plasma, abundance of light elements
- A CHAMP @ LHC would require model building to dilute its early universe density

Other Ideas

- Slepton trapping in water tanks
 Feng hep-ph/0405278 (colliders)
 Byrne hep-ph/020252 (cosmic rays)
- R-hadrons: CHAMPs + quarks
 Interactions with nuclei mainly due to quark. Can swap quarks, change electric charge.

Happy Winter Break!

References

- DØ, 0809.4472
- CDF note 8701
- Fairbairn et al, hep-ph/0611040
- Rakley, 0908.0315
- Feng & Smith, hep-ph/0409278

