USPAS Course on
 Recirculated and Energy Recovered Linacs

I. V. Bazarov
Cornell University

G. A. Krafft and L. Merminga

Jefferson Lab

Emittance and energy spread growth due to synchrotron radiation

CHESS / LEPP

Contents

- Coherent vs. incoherent emission
- Energy spread
- dipole magnets
- insertion devices
- Emittance growth
- dipole magnets
- H-fuction
- examples of calculation
- insertion devices

Quantum excitation

'Quantum excitation' in accelerator physics refers to diffusion of phase space (momentum) of e^{-}due to recoil from emitted photons.

Because radiated power scales as $\propto \gamma^{4}$ and critical photon energy (divides synchrotron radiation spectral power into two equal halves) as $\propto \gamma^{3}$, the effect becomes important at high energies (typically ≥ 3 GeV).

Here we consider incoherent synchrotron radiation primarily ($\lambda \ll$ σ_{z}, so that the radiation power scales linearly with the number of electrons). When radiation wavelength becomes comparable with the bunch length (or density modulation size), radiated power becomes quadratic with peak current. This coherent synchrotron radiation (CSR) effects can be important at all energies when bunch length becomes is sufficiently short.

CHESS/LEPP

Circular trajectory in the "rest" frame

Lorentz back-transform 4-vector $(\omega / c, \vec{k})$

Coherent radiation from a bend magnet

$$
\frac{d^{2} I}{d \omega d \Omega}=[N+N(N-1) f(\omega)] \frac{d^{2} I_{0}}{d \omega d \Omega}, f(\omega)=\left|\int \exp \left(\frac{i \omega z}{c}\right) S(z) d z\right|^{2}, \text { for } N \rightarrow \infty
$$

Form factor

Gaussian

$$
f(\omega)=\exp \left(-4 \pi^{2} \sigma^{2} / \lambda^{2}\right)
$$

Uniform

$$
f(\omega)=\operatorname{sinc}^{2}(2 \pi l / \lambda)
$$

Uniform
$f(\omega)=\operatorname{sinc}^{2}(2 \pi l / \lambda)$

CSR scaling, longitudinal and transverse effect

Recoil due to photon emission

Photon emission takes place in forward direction within a very small cone ($\sim 1 / \gamma$ opening angle). Therefore, to $1^{\text {st }}$ order, photon removes momentum in the direction of propagation of electron, leaving position and divergence of the electron intact at the point of emission.

CHESS / LEPP

Energy spread

Synchrotron radiation is a stochastic process. Probability distribution of the number of photons emitted by a single electron is described by Poisson distribution, and by Gaussian distribution in the approximation of large number of photons.
If emitting (on average) N_{ph} photons with energy E_{ph}, random walk growth of energy spread from its mean is

$$
\sigma_{E}^{2}=N_{p h} E_{p h}^{2}
$$

If photons are emitted with spectral distribution $\mathrm{N}_{\mathrm{ph}}\left(\mathrm{E}_{\mathrm{ph}}\right)$, then one has to
random walk
 integrate:

$$
\sigma_{E}^{2}=\int E_{p h}^{2} N\left(E_{p h}\right) d E_{p h}
$$

Spectrum of synchrotron radiation from bends

Photon emission (primarily) takes place in deflecting magnetic field (dipole bend magnets, undulators and wigglers). Spectrum of synchrotron radiation from bends is well known (per unit deflecting angle):

$$
\begin{aligned}
& \frac{d N_{p h}}{d \psi}=\frac{4 \alpha}{9} \gamma \frac{\Delta \omega}{\omega} \frac{I}{e} S\left(\frac{\omega}{\omega_{c}}\right) \\
& \omega_{c} \equiv \frac{3}{2} c \gamma^{3} / \rho
\end{aligned}
$$

Energy spread from bends

$$
\sigma_{E}^{2}=\frac{55}{32 \sqrt{3} \pi} C_{\gamma} \hbar c\left(m c^{2}\right)^{4} \gamma^{7} \int \frac{d s}{\rho}
$$

Sands' radiation constant for $\mathrm{e}^{-}: \quad C_{\gamma}=\frac{4 \pi r_{c}}{3\left(m c^{2}\right)^{3}}=8.86 \cdot 10^{-5} \frac{\mathrm{~m}}{\mathrm{GeV}^{3}}$

For constant bending radius ρ and total bend angle $\Theta(\Theta=2 \pi$ for a ring) energy spread becomes:

$$
\frac{\sigma_{E}^{2}}{E^{2}}=2.6 \cdot 10^{-10} E^{5}\left(\mathrm{GeV}^{5}\right) \frac{1}{\rho^{2}\left(\mathrm{~m}^{2}\right)} \frac{\Theta}{2 \pi}
$$

Radiated energy loss:

$$
E_{\gamma}=C_{\gamma} \frac{E^{4}}{\rho} \frac{\Theta}{2 \pi} \quad E_{\gamma}(\mathrm{MeV})=0.0886 \frac{E^{4}\left(\mathrm{GeV}^{4}\right)}{\rho(\mathrm{m})} \frac{\Theta}{2 \pi}
$$

Energy spread from planar undulator

$$
\sigma_{E}^{2}=\int E_{p h}^{2} N\left(E_{p h}\right) d E_{p h} \approx N_{p h} \varepsilon_{\gamma}^{2}
$$

Photon in fundamental $\varepsilon_{\gamma}=\frac{h c}{\lambda_{p}} \frac{2 \gamma^{2}}{\left(1+\frac{1}{2} K^{2}\right)} \quad \varepsilon_{\gamma}(\mathrm{eV})=950 \frac{E^{2}\left(\mathrm{GeV}^{2}\right)}{\lambda_{p}(\mathrm{~cm})\left(1+\frac{1}{2} K^{2}\right)}$
Radiated energy $/ \mathrm{e}^{-} \quad E_{\gamma}=\frac{4 \pi^{2} r_{c} E^{2} K^{2} L_{u}}{3 \lambda_{p}^{2} m c^{2}} \quad E_{\gamma}(\mathrm{eV})=725 \frac{E^{2}\left(\mathrm{GeV}^{2}\right) K^{2}}{\lambda_{p}^{2}\left(\mathrm{~cm}^{2}\right)} L_{u}(\mathrm{~m})$
Naively, one can estimate $N_{p h} \approx \frac{E_{\gamma}}{\varepsilon_{\gamma}}=0.763 \frac{K^{2}\left(1+\frac{1}{2} K^{2}\right)}{\lambda_{p}(\mathrm{~cm})} L_{u}(\mathrm{~m})$

$$
\frac{\sigma_{E}^{2}}{E^{2}} \approx 7 \cdot 10^{-13} \frac{E^{2}\left(\mathrm{GeV}^{2}\right) K^{2}}{\lambda_{p}^{3}\left(\mathrm{~cm}^{3}\right)\left(1+\frac{1}{2} K^{2}\right)} L_{u}(\mathrm{~m})
$$

Energy spread from planar undulator (contd.)

In reality, undulator spectrum is more complicated with harmonic content for $\mathrm{K} \geq 1$ and Doppler red shift for off-axis emission.

More rigorous treatment gives
$\frac{\sigma_{E}^{2}}{E^{2}} \approx 4.8 \cdot 10^{-13} \frac{E^{2}\left(\mathrm{GeV}^{2}\right) K^{2} F(K)}{\lambda_{p}^{3}\left(\mathrm{~cm}^{3}\right)} L_{u}(\mathrm{~m})$

with $F(K) \approx 1.2 K+\left(1+1.33 K+0.4 K^{2}\right)^{-1}$

Emittance growth

Consider motion:

$$
x=x_{\beta}+\eta_{x} \frac{\Delta E}{E}
$$

$$
x^{\prime}=x_{\beta}^{\prime}+\eta_{x}^{\prime} \frac{\Delta E}{E}
$$

where $x_{\beta}=a_{x} \sqrt{\beta_{x}(s)} e^{i \psi_{x}(s)}$
As discussed earlier, emission of a photon leads to:

$$
\begin{array}{ll}
\delta x=0=\delta x_{\beta}+\eta_{x} \frac{E_{p h}}{E} & \delta x_{\beta}=-\eta_{x} \frac{E_{p h}}{E} \\
\delta x^{\prime}=0=\delta x_{\beta}^{\prime}+\eta_{x}^{\prime} \frac{E_{p h}}{E} & \delta x_{\beta}^{\prime}=-\eta_{x}^{\prime} \frac{E_{p h}}{E}
\end{array}
$$

changing the phase space ellipse $a_{x}^{2}=\gamma_{x} x_{\beta}^{2}+2 \alpha_{x} x_{\beta} x_{\beta}^{\prime}+\beta_{x} x_{\beta}^{\prime 2}$

$$
\left\langle\delta a_{x}^{2}\right\rangle=\frac{E_{p h}^{2}}{E^{2}} H_{x}(s) \quad \text { here } H_{x}=\gamma_{x} \eta_{x}^{2}+2 \alpha_{x} \eta_{x} \eta_{x}^{\prime}+\beta_{x} \eta_{x}^{\prime 2}
$$

Emittance growth in bend

$$
\begin{gathered}
\sigma_{x}^{2}=\left\langle\left(a_{x} \sqrt{\beta_{x}(s)} e^{i \psi_{x}(s)}\right)^{2}\right\rangle_{s}=\frac{1}{2} a_{x}^{2} \beta_{x} \\
\varepsilon_{x}=\frac{1}{2} \Delta\left\langle a_{x}^{2}\right\rangle=\frac{1}{2 c E^{2}} \int d s \int E_{p h}^{2} \dot{N}_{p h}\left(E_{p h}\right) H(s) d E_{p h}
\end{gathered}
$$

In bends:

$$
\begin{gathered}
\varepsilon_{x}=\frac{55 C_{\gamma} \hbar c\left(m c^{2}\right)^{2}}{64 \pi \sqrt{3}} \gamma^{5} \int \frac{H d s}{\rho^{3}} \\
\varepsilon_{x}(\mathrm{~m}-\mathrm{rad})=1.3 \cdot 10^{-10} \frac{E^{5}\left(\mathrm{GeV}^{5}\right)\langle H\rangle(\mathrm{m})}{\rho^{2}\left(\mathrm{~m}^{2}\right)} \frac{\Theta}{2 \pi}
\end{gathered}
$$

As we have seen, lattice function H in dipoles $(1 / \rho \neq 0)$ matters for low emittance.

In the simplest achromatic cell (two identical dipole magnets with lens in between), dispersion is defined in the bends. One can show that an optimum Twiss parameters (α, β) exist that minimize $\langle H\rangle$

Such optimized double bend achromat is known as a Chasman Green lattice, and H is given by

$$
\langle H\rangle=\frac{1}{4 \sqrt{15}} \rho \theta^{3}
$$

$$
\langle H\rangle=3.6 \mathrm{~mm}
$$

$$
\langle H\rangle=9.1 \mathrm{~mm}
$$

A TBA cell for an ERL recirculating arc: a) $R_{56}=0 ;$ b) $R_{56}=2 \mathrm{~cm}$

$$
\langle H\rangle_{C-G} \approx 0.66 \mathrm{~mm}
$$

Emittance and energy spread in $1 / 4$ CESR

energy $=5 \mathrm{GeV}$
half-arc SR effect

large dispersion section for bunch compression

CHESS / LEPP

Emittance growth in undulator

$$
\varepsilon_{x} \approx \frac{1}{2} \frac{\sigma_{E}^{2}}{E^{2}}\langle H\rangle
$$

with energy spread $\sigma_{\mathrm{E}} / \mathrm{E}$ calculated earlier.

$$
\langle H\rangle=\frac{1}{L_{u}} \int_{0}^{L_{u}}\left(\beta \eta^{\prime 2}+2 \alpha \eta \eta^{\prime}+\gamma \eta^{2}\right) d s
$$

For sinusoidal undulator field $\quad B(s)=B_{0} \cos k_{p} s$ with $k_{p}=2 \pi / \lambda_{p}$
Differential equation for dispersion $\eta^{\prime \prime}=\frac{1}{\rho}=\frac{1}{\rho_{0}} \cos k_{p} s$

Emittance growth in undulator (contd.)

Dispersion function in one period of a undulator magnet.

$$
\eta(s)=\frac{1}{k_{p}^{2} \rho_{0}}\left(1-\cos k_{p} s\right)+\eta_{0} \quad \eta^{\prime}(s)=\frac{1}{k_{p} \rho_{0}} \sin k_{p} s
$$

For an undulator with beam waist (β^{*}) located at its center

$$
\begin{aligned}
& \langle H\rangle \approx \frac{\beta^{*}}{2 k_{p}^{2} \rho_{0}^{2}}\left(1+\frac{L_{u}^{2}}{12 \beta^{* 2}}+\frac{2 \eta_{0}^{2} k_{p}^{2} \rho_{0}^{2}}{\beta^{22}}+\frac{8 \eta_{0} \rho_{0}}{\beta^{* 2}}+\frac{11}{2 \beta^{* 2} k_{p}^{2}}\right) \\
& \approx \frac{\beta^{*} K^{2}}{2 \gamma^{2}}\left(1+\frac{L_{u}^{2}}{12 \beta^{22}}+\frac{2 \eta_{0}^{2} \gamma^{2}}{\beta^{* 2} K^{2}}+\frac{8 \eta \eta_{0}}{k_{p} K \beta^{* 2}}\right)
\end{aligned}
$$

Unless undulator is placed in high dispersion region, contribution to emittance remains small.

