Some Algebraic Structures

Set: thought of as any collection of objects.

Magma or groupoid: a set S with any single binary operation. For here we denote it by +. It takes $S \times S \to S$, i.e. $\forall a, b \in S$, $\exists c \in S$ so that c = a + b.

Semigroup: an associative magma \mathcal{M} }, i.e. $\forall a, b, c \in \mathcal{M}$ }, a + (b + c) = (a + b) + c.

Monoid: a semigroup SG with an identity element, i.e. $\exists a_0 \in SG$ so that $\forall a \in SG, a + a_0 = a$.

Group: a monoid \mathcal{M} in which every element has an inverse, i.e. $\forall a \in \mathcal{M}$, $\exists b \in \mathcal{M}$ so that $a + b + c = c \forall c \in \mathcal{M}$.

Abelian group: a commutative group \mathcal{G} , i.e. $\forall a, b \in \mathcal{G}, a + b = b + a$.

Ring: an Abelian group \mathcal{AG} with a monoid operation called multiplication, here denoted as \times , satisfying distributivity with respect to the binary operation of \mathcal{AG} , i.e. the set \mathcal{S} of \mathcal{AG} with + is an Abelian group, \mathcal{S} with \times is a monoid, and furthermore $\forall a, b, c \in \mathcal{S}, a \times (b+c) = a \times b + a \times c$.

Commutative ring: a ring \mathcal{R} whose multiplication is commutative, i.e. $\forall a, b \in \mathcal{R}, a \times b = b \times a$.

Field: a commutative ring $C\mathcal{R}$ where no element is simultaneously identity element of + and of ×, and in which each element has an inverse of ×, i.e. $\forall a \in C\mathcal{R}$ for which $\exists b \in C\mathcal{R}$ so that $a + b \neq a$, $\exists c \in C\mathcal{R}$ so that $(a \times c) \times d = d \forall d \in C\mathcal{R}$.

Module over a ring: an Abelian group \mathcal{AB} with its binary operation, here called \oplus , and a ring \mathcal{R} with its operations + and \times which has the following properties: (A) There is an additive unary operation called scalar multiplication for every element of \mathcal{R} , i.e. $\forall x \in \mathcal{R}, \exists x \cdot : S \to S$ so that $\forall a, b \in S, x \cdot (a \oplus b) = (x \cdot a) \oplus (x \cdot b)$, (B) The scalar multiplication is linked to multiplication in \mathcal{R} by an associativity condition, i.e. $\forall x, y, z \in R, a \in S, x \cdot [(y \times z) \cdot a] = (x \times y) \cdot (z \cdot a)$.

Algebra a module \mathcal{M} over a ring \mathcal{R} together with a binary operation \otimes on \mathcal{M} that is bilinear with respect to the scalar multiplication, i.e. $\forall a, b \in \mathcal{M}, \exists c \in \mathcal{M}$ with $c = a \otimes b$ and $\forall x, y \in \mathcal{R}, a, b, c \in \mathcal{M}, [(x \cdot a) \oplus (y \cdot b)] \otimes c = [(x \cdot a) \otimes c] \oplus [(y \cdot b) \otimes c]$ and $a \otimes [(x \cdot b) \oplus (y \cdot c)] = [(x \cdot a) \otimes b] \oplus [(y \cdot a) \otimes c]$.

Lie algebra: an algebra \mathcal{A} where the binary operation \otimes satisfies $\forall a \in \mathcal{A}, a \otimes a = 0$ and the Jacobi identity, i.e. $\forall a, b, c \in \mathcal{A}, [a \otimes (b \otimes c)] \oplus [b \otimes (c \otimes a)] \oplus [c \otimes (a \otimes b)] = 0.$

Associative algebra: an algebra \mathcal{A} where the module's binary operator \otimes is associative, i.e. $\forall a, b, c \in \mathcal{A}, a \otimes (b \otimes c) = (a \otimes b) \otimes c$.

Commutative algebra: an associative algebra \mathcal{AA} where the module's multiplication is commutative, it is called a multiplication, i.e. $\forall a, b \in \mathcal{AA}, a \otimes b = b \otimes a$.

Differential algebra: a commutative algebra $C\mathcal{A}$ with a differentiation $\partial : C\mathcal{A} \to C\mathcal{A}$, i.e. $\forall a, b \in C\mathcal{A}, \ \partial(a \oplus b) = \partial a \oplus \partial b$ and $\partial(a \otimes b) = (a \otimes \partial b) \oplus (b \otimes \partial a)$.