Some Algebraic Structures

Set：thought of as any collection of objects．

Magma or groupoid：a set \mathcal{S} with any single binary operation．For here we denote it by + ．It takes $\mathcal{S} \times \mathcal{S} \rightarrow \mathcal{S}$ ，i．e．$\forall a, b \in \mathcal{S}, \exists c \in \mathcal{S}$ so that $c=a+b$ ．

Semigroup：an associative magma $\mathcal{M}\}$ ，i．e．$\forall a, b, c \in \mathcal{M}\}, a+(b+c)=(a+b)+c$ ．
Monoid：a semigroup $\mathcal{S G}$ with an identity element，i．e．$\exists a_{0} \in \mathcal{S G}$ so that $\forall a \in \mathcal{S G}, a+a_{0}=a$ ．
Group：a monoid \mathcal{M} 亿 in which every element has an inverse，i．e．$\forall a \in \mathcal{M}$ 亿，$\exists b \in \mathcal{M}$ 亿 so that $a+b+c=c \forall c \in \mathcal{M} \imath$ ．

Abelian group：a commutative group \mathcal{G} ，i．e．$\forall a, b \in \mathcal{G}, a+b=b+a$ ．
Ring：an Abelian group $\mathcal{A G}$ with a monoid operation called multiplication，here denoted as \times ， satisfying distributivity with respect to the binary operation of $\mathcal{A G}$ ，i．e．the set \mathcal{S} of $\mathcal{A G}$ with + is an Abelian group， \mathcal{S} with \times is a monoid，and furthermore $\forall a, b, c \in \mathcal{S}, a \times(b+c)=a \times b+a \times c$ ．

Commutative ring：a ring \mathcal{R} whose multiplication is commutative，i．e．$\forall a, b \in \mathcal{R}, a \times b=b \times a$ ．
Field：a commutative ring $\mathcal{C R}$ where no element is simultaneously identity element of + and of \times ，and in which each element has an inverse of \times ，i．e．$\forall a \in \mathcal{C \mathcal { R }}$ for which $\exists b \in \mathcal{C \mathcal { R }}$ so that $a+b \neq a, \exists c \in \mathcal{C R}$ so that $(a \times c) \times d=d \forall d \in C \mathcal{R}$ ．

Module over a ring：an Abelian group $\mathcal{A B}$ with its binary operation，here called \oplus ，and a ring \mathcal{R} with its operations + and \times which has the following properties：（A）There is an additive unary operation called scalar multiplication for every element of \mathcal{R} ，i．e．$\forall x \in \mathcal{R}, \exists x \cdot: \mathcal{S} \rightarrow \mathcal{S}$ so that $\forall a, b \in \mathcal{S}, x \cdot(a \oplus b)=(x \cdot a) \oplus(x \cdot b)$ ，（B）The scalar multiplication is linked to multiplication in \mathcal{R} by an associativity condition，i．e．$\forall x, y, z \in R, a \in \mathcal{S}, x \cdot[(y \times z) \cdot a]=(x \times y) \cdot(z \cdot a)$ ．

Algebra a module \mathcal{M} over a ring \mathcal{R} together with a binary operation \otimes on \mathcal{M} that is bilinear with respect to the scalar multiplication，i．e．$\forall a, b \in \mathcal{M}, \exists c \in \mathcal{M}$ with $c=a \otimes b$ and $\forall x, y \in$ $\mathcal{R}, a, b, c \in \mathcal{M},[(x \cdot a) \oplus(y \cdot b)] \otimes c=[(x \cdot a) \otimes c] \oplus[(y \cdot b) \otimes c]$ and $a \otimes[(x \cdot b) \oplus(y \cdot c)]=[(x \cdot a) \otimes b] \oplus[(y \cdot a) \otimes c]$.

Lie algebra：an algebra \mathcal{A} where the binary operation \otimes satisfies $\forall a \in \mathcal{A}, a \otimes a=0$ and the Jacobi identity，i．e．$\forall a, b, c \in \mathcal{A},[a \otimes(b \otimes c)] \oplus[b \otimes(c \otimes a)] \oplus[c \otimes(a \otimes b)]=0$ ．

Associative algebra：an algebra \mathcal{A} where the module＇s binary operator \otimes is associative，i．e． $\forall a, b, c \in \mathcal{A}, a \otimes(b \otimes c)=(a \otimes b) \otimes c$ ．

Commutative algebra：an associative algebra $\mathcal{A \mathcal { A }}$ where the module＇s multiplication is com－ mutative，it is called a multiplication，i．e．$\forall a, b \in \mathcal{A} \mathcal{A}, a \otimes b=b \otimes a$ ．

Differential algebra：a commutative algebra $\mathcal{C A}$ with a differentiation $\partial: \mathcal{C} \mathcal{A} \rightarrow \mathcal{C A}$ ，i．e． $\forall a, b \in \mathcal{C} \mathcal{A}, \partial(a \oplus b)=\partial a \oplus \partial b$ and $\partial(a \otimes b)=(a \otimes \partial b) \oplus(b \otimes \partial a)$ ．

