Advanced Topics in Accelerator Physics (Hoffstaetter)
Due Date: Monday, 9/20/04-14:45 in 132 Rockefeller Hall

Exercise 1: Show that the Lorentz-force equation can be derived from the Hamiltonian $H=c \sqrt{\left[\vec{p}_{c}-q \vec{A}(\vec{r}, t)\right]^{2}+(m c)^{2}}+q \Phi(\vec{r}, t)$, where the canonical momentum \vec{p}_{c} is related to the classical momentum by $\vec{p}=\vec{p}_{c}-q \vec{A}$.

Exercise 2: Transform the Lorentz-force equation $\vec{p}=m \gamma \dot{\vec{r}}$ with $\gamma=\frac{1}{\sqrt{1-\left(\frac{\dot{\vec{r}}}{c}\right)^{2}}}$ and $\dot{\vec{p}}=\vec{F}(\vec{p}, \vec{r})$ so that s is the independent variable. Note that for simplicity it is assumed that the force does not depend on t. Derive \vec{G} for the resulting equation $\vec{p}_{c}^{\prime}=\vec{G}\left(\vec{p}_{c}, \vec{r}, s\right)$. Use a straight coordinate system so that $\frac{d s}{d t}=\frac{p_{s}}{m \gamma}$.

Exercise 3: Use exercise 2 and $\vec{F}=q\left(\frac{\vec{p}}{m \gamma} \times \vec{B}+\vec{E}\right)$, again assuming a time independent force to compute the equation of motion for the position and momentum components \vec{r}_{\perp} and \vec{p}_{\perp} perpendicular to the s-direction. Show that the Hamiltonian for these equations with s as independent variable agrees with $-p_{s}$, as derived in class.

Exercise 4: Show that \mathbf{M}^{T} is symplectic if and only if \mathbf{M} is symplecitic.

Exercise 5: Derive the equation of motion for Twiss parameters, $\alpha^{\prime}+\gamma=$ $K(s) \beta$ with $K=\left[\kappa(s)^{2}+k(s)\right]$ from the linearized equation of motion $x^{\prime \prime}=$ $-K(s) x$. Use $x=\sqrt{2 J \beta(s)} \sin (\Psi(s)+\Phi), \alpha=-\frac{1}{2} \beta^{\prime}$ and $\Psi(s)^{\prime}=\frac{1}{\beta}$.

